用torch写一个GAN网络生成三维数据
时间: 2024-05-14 09:18:18 浏览: 102
GAN网络生成MNIST手写数字Pytorch代码
5星 · 资源好评率100%
以下一个简单的GAN网络用于生成三维数据的示例代码,使用PyTorch框架实现:
```python
import torch
import torch.nn as nn
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
# 生成器网络
class Generator(nn.Module):
def __init__(self, input_size, output_size):
super(Generator, self).__init__()
self.fc1 = nn.Linear(input_size, 128)
self.fc2 = nn.Linear(128, 256)
self.fc3 = nn.Linear(256, output_size)
self.relu = nn.LeakyReLU(0.2)
self.tanh = nn.Tanh()
def forward(self, x):
out = self.fc1(x)
out = self.relu(out)
out = self.fc2(out)
out = self.relu(out)
out = self.fc3(out)
out = self.tanh(out)
return out
# 判别器网络
class Discriminator(nn.Module):
def __init__(self, input_size):
super(Discriminator, self).__init__()
self.fc1 = nn.Linear(input_size, 256)
self.fc2 = nn.Linear(256, 128)
self.fc3 = nn.Linear(128, 1)
self.relu = nn.LeakyReLU(0.2)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
out = self.fc1(x)
out = self.relu(out)
out = self.fc2(out)
out = self.relu(out)
out = self.fc3(out)
out = self.sigmoid(out)
return out
# 定义参数
input_size = 100
output_size = 3
num_epochs = 20000
batch_size = 64
learning_rate = 0.0002
# 实例化网络和优化器
G = Generator(input_size, output_size)
D = Discriminator(output_size)
criterion = nn.BCELoss()
G_optimizer = torch.optim.Adam(G.parameters(), lr=learning_rate)
D_optimizer = torch.optim.Adam(D.parameters(), lr=learning_rate)
# 生成随机噪声函数
def noise(size):
n = torch.randn(size, input_size)
return n
# 定义真实数据
def real_data_generator(size):
x = np.random.uniform(-1, 1, size)
y = np.random.uniform(-1, 1, size)
z = np.random.uniform(-1, 1, size)
data = np.stack((x, y, z), axis=1)
return torch.from_numpy(data).float()
# 训练GAN网络
for epoch in range(num_epochs):
# 判别器训练
for _ in range(5):
# 生成假数据
z = noise(batch_size)
fake_data = G(z)
# 计算损失
D_real = D(real_data_generator(batch_size))
D_fake = D(fake_data)
D_loss = criterion(D_real, torch.ones(batch_size)) + criterion(D_fake, torch.zeros(batch_size))
# 反向传播和优化
D_optimizer.zero_grad()
D_loss.backward()
D_optimizer.step()
# 生成器训练
z = noise(batch_size)
fake_data = G(z)
D_fake = D(fake_data)
G_loss = criterion(D_fake, torch.ones(batch_size))
# 反向传播和优化
G_optimizer.zero_grad()
G_loss.backward()
G_optimizer.step()
# 打印损失
if epoch % 1000 == 0:
print(f"Epoch {epoch}, Generator loss: {G_loss.item()}, Discriminator loss: {D_loss.item()}")
# 生成数据并可视化
z = noise(1000)
generated_data = G(z).detach().numpy()
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.scatter(generated_data[:, 0], generated_data[:, 1], generated_data[:, 2], s=5)
plt.show()
```
在训练过程中,我们使用随机噪声作为生成器的输入,生成器负责将噪声转换为三维数据。判别器负责判断输入的数据是真实的还是生成的。GAN网络的训练是一个对抗过程,生成器和判别器相互竞争,直到生成器可以生成逼真的三维数据。
阅读全文