if (( r= (bitree *)malloc (sizeof(bitree)))) 7 typedef char data_t; | 12 bitree *r; | 24 printf("malloc failed\n"); 8 typedef struct node_t | 13 if( (r = tree_create())==NULL) | 25 return NULL; 9 { | 14 return -1; | 26 r->data=ch;

时间: 2023-12-29 07:03:45 浏览: 19
这段代码是一个动态内存分配的语句,在第7行中,使用malloc函数来为一个结构体变量分配一段内存空间,该结构体类型为bitree。如果分配成功,则将该指针赋值给r。如果分配失败,则在第8行中输出一条错误信息。 在第13行中,调用了一个名为tree_create的函数来分配一个bitree结构体的内存空间,并将该指针赋值给r。如果分配失败,则返回NULL。 在第26行中,将一个字符赋值给r指向的bitree结构体的data成员。
相关问题

Bitree** T

Bitree** T是一个指向指针的指针,它可以用来表示一个指向二叉树的指针的地址。在C语言中,可以使用Bitree** T来传递一个指向指针的指针,以便在函数中修改指针的值。 以下是一个示例代码,演示了如何使用Bitree** T来创建一个二叉树的指针,并将其传递给函数进行修改: ```c typedef struct BiTNode { int data; struct BiTNode *lchild, *rchild; } BiTNode, *BiTree; void createTree(BiTree** T) { *T = (BiTree)malloc(sizeof(BiTNode)); (*T)->data = 1; (*T)->lchild = (BiTree)malloc(sizeof(BiTNode)); (*T)->lchild->data = 2; (*T)->lchild->lchild = NULL; (*T)->lchild->rchild = NULL; (*T)->rchild = (BiTree)malloc(sizeof(BiTNode)); (*T)->rchild->data = 3; (*T)->rchild->lchild = NULL; (*T)->rchild->rchild = NULL; } int main() { BiTree* T; createTree(&T); // 现在T指向了一个指向二叉树的指针 // 可以在这里对二叉树进行操作 return 0; } ```

//二叉链表的结构定义 typedef char ElemType;//元素类型为字符类型 typedef struct BTNode { ElemType data; struct BTNode *lchild, *rchild; }BTNode; typedef struct BTNode bitree; /*函数声明从此处开始*/ //以递归方式创建二叉树(需扩展),如输入:ABD##E##C#FHJ##K##I## bitree * CreateBTree1(); //以递归方式创建二叉树(需扩展),如输入:ABD##E##C#FHJ##K##I## void CreateBTree2(bitree *&root); //销毁二叉树:释放动态分配的空间 void DestroyBTree(bitree *root); /*函数声明到此处结束*/ /*函数定义从此处开始*/ //以递归方式创建二叉树(需扩展),如输入:ABD##E##C#FHJ##K##I## bitree * CreateBTree1() { bitree *root ;char ch; ch=getchar(); if (ch == '#') root = NULL; else { root=(bitree*)malloc(sizeof(bitree)); root->data=ch; root->lchild = NULL; root->rchild = NULL; root->lchild =CreateBTree1(); root->rchild= CreateBTree1(); } return root; } //以递归方式创建二叉树(需扩展),如输入:ABD##E##C#FHJ##K##I## void CreateBTree2(bitree *&root) { char ch; ch=getchar(); if (ch == '#') root = NULL; else { root=(bitree*)malloc(sizeof(bitree)); root->data=ch; root->lchild = NULL; root->rchild = NULL; CreateBTree2(root->lchild); CreateBTree2(root->rchild); } } //销毁二叉树:释放动态分配的空间 void DestroyBTree(bitree *root) { if( root != NULL) { if (root->lchild != NULL) DestroyBTree(root->lchild); if (root->rchild != NULL) DestroyBTree(root->rchild); free(root); } }

CEG###FH##I##,表示根节点为A,A的左子树为B的子树,B的左子树为空,右子树为D的子树,D的左右子树为空,A的右子树为C的子树,C的左子树为空,右子树为E的子树,E的左右子树为空,C的右子树为F的子树,F的左子树为空,右子树为空,A到F中间不含节点(即空节点记为#) bitree *CreatBTree(); //层次遍历输出二叉树 void LevelOrder(bitree *root); //前序遍历递归版 void PreOrder_Traversal(bitree *root); //前序遍历非递归版 void Pre_Order_Traversal(bitree *root); //中序遍历递归版 void InOrder_Traversal(bitree *root); //中序遍历非递归版 void In_Order_Traversal(bitree *root); //后序遍历递归版 void PostOrder_Traversal(bitree *root); //后序遍历非递归版 void Post_Order_Traversal(bitree *root); //计算二叉树的深度 int Tree_Depth(bitree *root); //统计二叉树中叶子节点的个数 int Leaf_Count(bitree *root); //统计二叉树中节点的个数 int Node_Count(bitree *root); 以上是二叉链表的结构定义和一些常用操作函数的函数声明。其中包括以递归和非递归方式实现的前序、中序、后序遍历函数、层次遍历函数、计算二叉树深度函数、统计叶子节点个数函数和统计节点个数函数。其中,以递归方式实现的遍历函数通常使用较简单,但非递归方式实现的遍历函数能够充分发挥栈的作用,具有一定的优势。------------------------------------------------------------------------------------------------------------------------------------------------------------- English version: The structure definition of binary linked list is shown below: typedef char ElemType; //Element type is character typedef struct BTNode { ElemType data; struct BTNode *lchild, *rchild; } BTNode; typedef struct BTNode bitree; The following functions are included in the program: bitree *CreatBTree(); //create binary tree recursively (to be expanded) void LevelOrder(bitree *root); //traverse binary tree in level order void PreOrder_Traversal(bitree *root); //preorder traversal recursively void Pre_Order_Traversal(bitree *root);//preorder traversal non-recursively void InOrder_Traversal(bitree *root);//inorder traversal recursively void In_Order_Traversal(bitree *root);//inorder traversal non-recursively void PostOrder_Traversal(bitree *root);//postorder traversal recursively void Post_Order_Traversal(bitree *root);//postorder traversal non-recursively int Tree_Depth(bitree *root);//calculate the depth of binary tree int Leaf_Count(bitree *root);//count the number of leaf nodes in binary tree int Node_Count(bitree *root);//count the number of nodes in binary tree The above functions include recursive and non-recursive versions of preorder, inorder, and postorder traversal functions, level order traversal function, function to calculate the depth of the binary tree, function to count the number of leaf nodes, and function to count the number of nodes. Recursive traversal functions are usually simpler to implement, but non-recursive traversal functions can fully utilize the stack and have certain advantages.

相关推荐

#define MAXSIZE 100 typedef int KeyType; /*关键字类型*/ typedef struct { KeyType key; /*InfoType otherinfo;*/ }RedType; /*记录类型*/ typedef struct BiTNode { RedType data; struct BiTNode *lchild,*rchild; }BiTNode, *BiTree; /*动态查找表的二叉链表存储表示*/#include <stdio.h> #include <stdlib.h> #include <string.h> #include "search.h" BiTree Search_BST(BiTree T, KeyType key, BiTNode **parent) {/*在二叉排序树T上查找其关键字等于key的记录结点。若找到返回该结点指针,parent指向其双亲;否则返回空指针,parent指向访问路径上最后一个结点。*/ // 请在这里补充代码,完成本关任务 /********** Begin *********/ /********** End **********/ } void Insert_BST(BiTree *T, RedType r)/*若二叉排序树T中没有关键字为r.key的记录,则插入*/ { BiTNode *p,*q,*parent; parent=NULL; p=Search_BST(*T,r.key,&parent); /*查找*/ if(p) printf("BST中有结点r,无需插入\n"); else { p=parent; q=(BiTNode *)malloc(sizeof(BiTNode)); q->data=r; q->lchild=q->rchild=NULL; if(*T==NULL) *T=q; /*若T为空,则q为新的根*/ else if(r.keydata.key) p->lchild=q; else p->rchild=q; } } BiTree Create_BST( ) /*二叉排序树的构造*/ {/*输入若干记录的关键字(以-1标志结束),生成一棵BST,采用二叉链表存储,返回其根指针T*/ BiTree T; RedType r; T=NULL; /*建空树*/ scanf("%d",&r.key); while(r.key!=-1) { Insert_BST(&T, r); scanf("%d",&r.key); } return T; } void PreOrder(BiTree bt) /*先序遍历*/ { if(bt) { printf("%d ",bt->data.key); PreOrder(bt->lchild); PreOrder(bt->rchild); } } void InOrder(BiTree bt) /*中序遍历*/ { if(bt) { InOrder(bt->lchild); printf("%d ",bt->data.key); InOrder(bt->rchild); } 补充代码

最新推荐

recommend-type

grpcio-1.47.0-cp310-cp310-linux_armv7l.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

小程序项目源码-美容预约小程序.zip

小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序v
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】MATLAB用遗传算法改进粒子群GA-PSO算法

![MATLAB智能算法合集](https://static.fuxi.netease.com/fuxi-official/web/20221101/83f465753fd49c41536a5640367d4340.jpg) # 2.1 遗传算法的原理和实现 遗传算法(GA)是一种受生物进化过程启发的优化算法。它通过模拟自然选择和遗传机制来搜索最优解。 **2.1.1 遗传算法的编码和解码** 编码是将问题空间中的解表示为二进制字符串或其他数据结构的过程。解码是将编码的解转换为问题空间中的实际解的过程。常见的编码方法包括二进制编码、实数编码和树形编码。 **2.1.2 遗传算法的交叉和
recommend-type

openstack的20种接口有哪些

以下是OpenStack的20种API接口: 1. Identity (Keystone) API 2. Compute (Nova) API 3. Networking (Neutron) API 4. Block Storage (Cinder) API 5. Object Storage (Swift) API 6. Image (Glance) API 7. Telemetry (Ceilometer) API 8. Orchestration (Heat) API 9. Database (Trove) API 10. Bare Metal (Ironic) API 11. DNS
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【实战演练】时间序列预测用于个体家庭功率预测_ARIMA, xgboost, RNN

![【实战演练】时间序列预测用于个体家庭功率预测_ARIMA, xgboost, RNN](https://img-blog.csdnimg.cn/img_convert/5587b4ec6abfc40c76db14fbef6280db.jpeg) # 1. 时间序列预测简介** 时间序列预测是一种预测未来值的技术,其基于历史数据中的时间依赖关系。它广泛应用于各种领域,例如经济、金融、能源和医疗保健。时间序列预测模型旨在捕捉数据中的模式和趋势,并使用这些信息来预测未来的值。 # 2. 时间序列预测方法 时间序列预测方法是利用历史数据来预测未来趋势或值的统计技术。在时间序列预测中,有许多不
recommend-type

怎么在集群安装安装hbase

您好,关于如何在集群上安装HBase,步骤大致如下: 1. 在HBase官网上下载最新版本的HBase,并解压到需要安装的目录下; 2. 配置HBase的环境变量:将HBase目录的bin子目录加入到PATH环境变量中; 3. 修改HBase配置文件:在HBase目录下的conf子目录中找到hbase-site.xml文件,并进行相应的配置,如指定HBase的Zookeeper节点等; 4. 启动HBase:使用HBase的bin目录下的start-hbase.sh脚本启动HBase; 5. 验证HBase是否正常运行:使用HBase自带的shell命令行工具操作HBase。 注意:以上步