predicted_classes = decode_predictions(predictions, top=1) for imagenet_id, name, likelihood in predicted_classes[0]: print("预测结果: {} - {:.2f}%".format(name, likelihood * 100))这一段代码报错name 'model' is not defined怎么办
时间: 2024-03-01 16:49:34 浏览: 141
这个错误通常是由于没有正确地导入模型或定义模型变量引起的。请确保您的代码中正确地导入了模型,并且模型变量名与您的代码中的变量名相同。
例如,如果您正在使用ResNet50模型,并且您的模型变量名为“model”,则您需要按照以下方式导入模型并定义模型变量:
```python
from tensorflow.keras.applications.resnet50 import ResNet50, preprocess_input, decode_predictions
model = ResNet50(weights='imagenet')
```
在这个例子中,我们从TensorFlow中导入ResNet50模型,并将它加载到名为“model”的变量中。我们还导入了预处理函数preprocess_input和解码函数decode_predictions。
请注意,模型的定义和加载可能因您使用的框架和模型而有所不同。因此,您需要根据您的具体情况来导入和定义模型变量。
相关问题
import random import logging logging.basicConfig(level=logging.INFO) import torch from pytorch_transformers import GPT2Tokenizer from pytorch_transformers import GPT2LMHeadModel # 选择 top-k 的函数的实现, def select_top_k(predictions, k=10): predicted_index = random.choice( predictions[0, -1, :].sort(descending=True)[1][:10]).item() return predicted_index # 载入预训练模型的分词器 tokenizer = GPT2Tokenizer.from_pretrained('gpt2') # 使用 GPT2Tokenizer 对输入进行编码 text = "Yesterday, a man named Jack said he saw an alien," indexed_tokens = tokenizer.encode(text) tokens_tensor = torch.tensor([indexed_tokens]) # 读取 GPT-2 预训练模型 model = GPT2LMHeadModel.from_pretrained("gpt2") model.eval() total_predicted_text = text n = 100 # 预测过程的循环次数 for _ in range(n): with torch.no_grad(): outputs = model(tokens_tensor) predictions = outputs[0] predicted_index = select_top_k(predictions, k=10) predicted_text = tokenizer.decode(indexed_tokens + [predicted_index]) total_predicted_text += tokenizer.decode(predicted_index) if '<|endoftext|>' in total_predicted_text: # 如果出现文本结束标志,就结束文本生成 break indexed_tokens += [predicted_index] tokens_tensor = torch.tensor([indexed_tokens]) print(total_predicted_text)注释代码,并说明实现的功能
以下是对代码的注释和功能说明:
```python
import random
import logging
# 设置日志级别为 INFO
logging.basicConfig(level=logging.INFO)
import torch
from pytorch_transformers import GPT2Tokenizer
from pytorch_transformers import GPT2LMHeadModel
# 定义选择 top-k 的函数,返回的是预测的 token 索引
def select_top_k(predictions, k=10):
predicted_index = random.choice(predictions[0, -1, :].sort(descending=True)[1][:10]).item()
return predicted_index
# 载入预训练模型的分词器
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
# 使用 GPT2Tokenizer 对输入进行编码
text = "Yesterday, a man named Jack said he saw an alien,"
indexed_tokens = tokenizer.encode(text)
tokens_tensor = torch.tensor([indexed_tokens])
# 读取 GPT-2 预训练模型
model = GPT2LMHeadModel.from_pretrained("gpt2")
model.eval()
total_predicted_text = text
n = 100 # 预测过程的循环次数
# 进行文本生成的循环
for _ in range(n):
with torch.no_grad():
outputs = model(tokens_tensor)
predictions = outputs[0]
# 选择 top-k 的 token 索引
predicted_index = select_top_k(predictions, k=10)
predicted_text = tokenizer.decode(indexed_tokens + [predicted_index])
total_predicted_text += tokenizer.decode(predicted_index)
# 如果出现文本结束标志,就结束文本生成
if '
predicted_labels = np.argmax(predictions, axis=1) predicted_levels = [] predicted_onehot = np.zeros(predictions.shape) predicted_onehot[np.arange(len(predicted_labels)), predicted_labels] = 1这部分会导致准确率降低吗
这部分代码不会导致准确率降低,实际上它是将模型的预测结果从概率形式转换为了One-Hot编码的形式,以方便计算预测的准确率。
具体来说,np.argmax(predictions, axis=1)这句代码用于找到每个样本中预测概率最高的标签,这些标签将作为我们的预测结果。接下来,我们通过创建一个全零矩阵 predicted_onehot,并将每个样本中预测结果所对应的位置的值设置为1,从而将预测结果转换为One-Hot编码的形式。
predicted_levels = []这句代码则用于存储预测结果所对应的类别标签,它是将预测结果从One-Hot编码的形式转换为了单个标签形式。这在后续计算准确率时会用到。
因此,这部分代码不会导致准确率降低,反而可以方便我们对模型的预测结果进行处理和分析。
阅读全文