导入数据、查看数据 划分数据集(train & test) 训练默认参数的SVM模型,并查看精度 分别调整参数C、gamma、kernel,看模型的精度如何变化 (选做)网格化搜索,找到一组最优参数
时间: 2024-06-04 18:12:49 浏览: 56
、dev、test)的常用方法有哪些?
常用的数据集划分方法有随机划分、分层抽样、时间序列划分等。其中随机划分是最常用的方法,将数据随机分成三个子集,分别用于训练、验证和测试。分层抽样是在样本中按照某种特征进行分层,然后按一定比例划分数据集。时间序列划分则是将数据按照时间顺序排列,然后将前面一段时间的数据作为训练集,中间一段时间的数据作为验证集,后面一段时间的数据作为测试集。
相关问题
#加载数据集 digits = load_digits() #创建dataframe data = pd.DataFrame(digits.data, columns = digits.feature_names) data['class'] = digits.target#加载数据集 digits = load_digits() #创建dataframe data = pd.DataFrame(digits.data, columns = digits.feature_names) data['class'] = digits.target#训练模型:线性SVM clf1 = svm.LinearSVC() # 这里的参数gamma和C可以根据需要进行调整 clf1.fit(X_train, y_train) y_predict = clf1.predict(X_test) #y测试集预估 print("线性SVM测试集准确率:", clf1.score(X_test, y_test)) print("线性SVM", classification_report(y_test, clf1.predict(X_test))) #模型训练:RBF核函数SVM clf2 = svm.SVC() # 这里的参数gamma和C可以根据需要进行调整 clf2.fit(X_train, y_train) y_predict = clf2.predict(X_test) #y测试集预估 print("RBF核函数SVM准确率:", clf2.score(X_test, y_test)) print("RBF核函数SVM", classification_report(y_test, clf2.predict(X_test)))
这段代码是用来训练两个不同的支持向量机(SVM)模型,一个是使用线性核函数的线性SVM模型,另一个是使用高斯径向基核函数的SVM模型。先加载了手写数字数据集,然后将其转换为DataFrame格式,并将目标变量添加到数据帧中。接着,使用训练集训练两个不同的SVM模型,分别是线性SVM和RBF核函数SVM,并使用测试集进行评估,输出它们的准确率和分类报告。
生成代码SVM 分类模型 搭建并创建支持向量机模型实现玻璃等级划分问题。将数据集按8:2的比例划分为训练集和 测试集,使用 SVM 分类器对训练集进行训练,并使用测试集测试玻璃等级划分的准确性。 (1)读取数据集‘glass.csv',划分数据和标签(最后一列数据“类别“为标签); (2)按8:2划分训练集和测试集 (3)对数据标准差标准化
下面是 Python 代码实现 SVM 分类模型的搭建,并创建支持向量机模型实现玻璃等级划分问题。
```python
# 导入所需库
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score
# 读取数据集
data = pd.read_csv('glass.csv')
# 划分数据和标签
X = data.iloc[:, :-1]
y = data.iloc[:, -1]
# 按8:2划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 对数据标准差标准化
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
# 创建 SVM 分类器
svm = SVC(kernel='linear', C=1, gamma='auto')
# 训练 SVM 分类器
svm.fit(X_train, y_train)
# 预测测试集
y_pred = svm.predict(X_test)
# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy: {:.2f}%".format(accuracy * 100))
```
解释一下上面的代码:
首先,我们导入了所需的库。然后,我们使用 Pandas 的 `read_csv()` 函数读取名为 `glass.csv` 的数据集,并使用 `iloc()` 方法将数据和标签分开。
接下来,我们使用 `train_test_split()` 函数按照 8:2 的比例将数据集划分为训练集和测试集。同时,我们使用 `StandardScaler()` 函数对数据进行标准化处理。
然后,我们创建了一个支持向量机分类器 `svm`,并使用 `fit()` 方法对训练集进行训练。最后,我们使用 `predict()` 方法预测测试集,并使用 `accuracy_score()` 函数计算准确率。
最后,我们输出准确率。
阅读全文