在OpenCV Python中使用OpenCL加速可以提高图像处理的速度进行中值滤波代码
时间: 2023-06-18 17:07:26 浏览: 232
一种硬件加速OpenCV的图像处理方法研究
下面是使用OpenCL加速中值滤波的Python代码:
```python
import cv2
import numpy as np
import pyopencl as cl
# Load image
img = cv2.imread('image.jpg', cv2.IMREAD_GRAYSCALE)
# Create OpenCL context and queue
ctx = cl.create_some_context()
queue = cl.CommandQueue(ctx)
# Create OpenCL program and kernel
program = cl.Program(ctx, """
__kernel void median_filter(__global const uchar* src, __global uchar* dst,
const int width, const int height, const int window_size) {
const int x = get_global_id(0);
const int y = get_global_id(1);
const int offset = window_size / 2;
const int index = y * width + x;
if (x >= offset && x < width - offset && y >= offset && y < height - offset) {
// Initialize window
uchar window[25];
for (int i = -offset; i <= offset; i++) {
for (int j = -offset; j <= offset; j++) {
window[(i + offset) * window_size + (j + offset)] = src[(y + i) * width + (x + j)];
}
}
// Sort window
for (int i = 0; i < window_size * window_size - 1; i++) {
for (int j = i + 1; j < window_size * window_size; j++) {
if (window[i] > window[j]) {
uchar temp = window[i];
window[i] = window[j];
window[j] = temp;
}
}
}
// Set median pixel value
dst[index] = window[window_size * window_size / 2];
}
else {
// Copy edge pixels
dst[index] = src[index];
}
}
""").build()
kernel = program.median_filter
# Create OpenCL buffers
img_buf = cl.Buffer(ctx, cl.mem_flags.READ_ONLY | cl.mem_flags.COPY_HOST_PTR, hostbuf=img)
result_buf = cl.Buffer(ctx, cl.mem_flags.WRITE_ONLY, img.nbytes)
# Execute kernel
window_size = 5
global_size = (img.shape[1], img.shape[0])
local_size = (16, 16) # Must be a multiple of the work group size defined in the kernel
kernel(queue, global_size, local_size, img_buf, result_buf, np.int32(img.shape[1]), np.int32(img.shape[0]), np.int32(window_size))
# Copy result back to host
result = np.empty_like(img)
cl.enqueue_copy(queue, result, result_buf)
# Display result
cv2.imshow('Original Image', img)
cv2.imshow('Filtered Image', result)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
这个代码首先加载图像,然后创建OpenCL上下文和命令队列。接下来,它创建OpenCL程序和中值滤波内核,并使用它们创建OpenCL缓冲区以存储输入和输出数据。然后,它执行内核,并将结果从OpenCL缓冲区复制回主机内存。最后,它显示原始图像和过滤后的图像。
阅读全文