使用C++:输入坐标点集x/y,使用三次多项式进行轨迹插值,最大曲率为0.2,输出轨迹点坐标
时间: 2024-02-28 20:55:28 浏览: 78
实现三维坐标变换、投影变换,C++实现。
3星 · 编辑精心推荐
好的,我了解了。这是一个比较复杂的问题,需要使用数值计算方法实现。下面是一个简单的C++代码示例,可以实现你的要求。
```c++
#include <iostream>
#include <vector>
#include <cmath>
using namespace std;
struct Point {
double x, y;
};
// 三次多项式插值函数
Point interpolate(double x, const vector<Point>& points) {
int n = points.size();
double h[n], l[n], u[n], z[n];
double alpha[n], b[n], c[n], d[n];
// 计算步长h
for (int i = 0; i < n - 1; i++) {
h[i] = points[i+1].x - points[i].x;
}
// 计算L/U分解
l[0] = 1;
u[0] = 0;
z[0] = 0;
for (int i = 1; i < n - 1; i++) {
l[i] = 2 * (points[i+1].x - points[i-1].x) - h[i-1] * u[i-1];
u[i] = h[i] / l[i];
alpha[i] = (3 / h[i]) * (points[i+1].y - points[i].y) - (3 / h[i-1]) * (points[i].y - points[i-1].y);
z[i] = (alpha[i] - h[i-1] * z[i-1]) / l[i];
}
l[n-1] = 1;
z[n-1] = 0;
c[n-1] = 0;
// 计算b/c/d
for (int i = n - 2; i >= 0; i--) {
c[i] = z[i] - u[i] * c[i+1];
b[i] = (points[i+1].y - points[i].y) / h[i] - h[i] * (c[i+1] + 2 * c[i]) / 3;
d[i] = (c[i+1] - c[i]) / (3 * h[i]);
}
// 计算插值点的y值
int k = 0;
while (k < n-1 && points[k+1].x < x) {
k++;
}
double dx = x - points[k].x;
double y = points[k].y + b[k]*dx + c[k]*dx*dx + d[k]*dx*dx*dx;
return {x, y};
}
// 计算曲率
double curvature(const Point& p1, const Point& p2, const Point& p3) {
double dx1 = p2.x - p1.x;
double dy1 = p2.y - p1.y;
double dx2 = p3.x - p2.x;
double dy2 = p3.y - p2.y;
double cross = dx1 * dy2 - dy1 * dx2;
double dot = dx1 * dx2 + dy1 * dy2;
double dist1 = sqrt(dx1 * dx1 + dy1 * dy1);
double dist2 = sqrt(dx2 * dx2 + dy2 * dy2);
double angle = acos(dot / (dist1 * dist2));
return abs(cross / (dist1 * dist2 * angle));
}
int main() {
// 输入点集
vector<Point> points;
int n;
cin >> n;
for (int i = 0; i < n; i++) {
double x, y;
cin >> x >> y;
points.push_back({x, y});
}
// 插值
vector<Point> result;
result.push_back(points[0]);
for (int i = 1; i < n-1; i++) {
double x1 = points[i-1].x;
double x2 = points[i].x;
double x3 = points[i+1].x;
double k = curvature(points[i-1], points[i], points[i+1]);
if (k > 0.2) {
double x = (x2 + x3) / 2;
Point p = interpolate(x, points);
result.push_back(p);
i--;
} else {
result.push_back(points[i]);
}
}
result.push_back(points[n-1]);
// 输出结果
for (const auto& p : result) {
cout << p.x << " " << p.y << endl;
}
return 0;
}
```
这个代码实现了输入点集,使用三次多项式进行轨迹插值,最大曲率为0.2,并输出轨迹点坐标。你可以根据自己的需求进行修改和优化。
阅读全文