m0=2 m=2 N=20 x1=100rand(1,m0); y1=100rand(1,m0); x2=100rand(1,m0); y2=100rand(1,m0); for i=1:N z11(i)=10 end z1=z11' for i=1:N z22(i)=90 end z2=z22' %for i=1:N %z1(i)=10 %end %for i=1:N %z2(i)=90 %end for i=1:m0 for j=i+1:m0 p1=rand(1,1); p2=rand(1,1); if p1>0.5 a1(i,j)=1; a1(j,i)=0; end if p2>0.5 a2(i,j)=1; a2(j,i)=0; end end end for k=m0+1:N M=size(a1,1);p=zeros(1,M); M1=size(a2,1);p1=zeros(1,M1); x0=100rand(1,1);y0=100rand(1,1); x1(k)=x0;y1(k)=y0; x2(k)=x0;y2(k)=y0; if length(find(a1==1))==0 p(:)=1/M; else for i=1:M p(i)=length(a1(i,:)==1)/length(find(a1==1)); end if length(find(a2==1))==0 p1(:)=1/M1; else for i=1:M1 p1(i)=length(a2(i,:)==1)/length(find(a2==1)); end end end pp=cumsum(p); pp1=cumsum(p1); for i=1:m random_data=rand(1,1); random_data1=rand(1,1); aa=find(pp>=random_data);jj=aa(1); aa1=find(pp1>=random_data1);jj1=aa1(1); a1(k,jj)=1; a1(jj,k)=1; a2(k,jj1)=1; a2(jj1,k)=1; end end a11=sum(a1); a22=sum(a2); [a111,Ia1]=sort(a11);%sort(A):对一维或二维矩阵进行升序排序,并返回排序后的矩阵;当A为二维矩阵时,对矩阵的每一列分别进行排序 [a222,Ia2]=sort(a22); for i1=1:0.5p(size(a1,1)+size(a2,1)) %遍历耦合边个数 a3(Ia1(1,size(a1,2)-i1+1),Ia2(1,size(a2,2)-i1+1))=1;%提取矩阵元素,1 a3(Ia2(1,size(a2,2)-i1+1),Ia1(1,size(a1,2)-i1+1))=1; end 已知该双层相依网络,该如何研究网络的韧性呢,用matlab实现

时间: 2023-08-18 07:09:57 浏览: 39
要研究网络的韧性,可以考虑以下步骤: 1.计算网络的基本参数,如平均度、聚类系数、直径等等。 2.对网络进行攻击或随机破坏,比如删除节点或边,计算网络的韧性指标,如最大连通性、平均路径长度、网络效率等等。 3.通过对比不同攻击方式下的网络韧性指标,来评估网络的韧性,并找到网络中的脆弱部分和关键节点。 4.通过模拟网络恢复过程,来研究网络的恢复能力和恢复时间,进一步评估网络的韧性。 下面是一份可能的 MATLAB 代码实现: % 计算网络基本参数 G1 = graph(a1); % 构建图对象 G2 = graph(a2); k1 = mean(degree(G1)); % 平均度 k2 = mean(degree(G2)); c1 = mean(clusteringcoefficients(G1)); % 聚类系数 c2 = mean(clusteringcoefficients(G2)); d1 = diameter(G1); % 直径 d2 = diameter(G2); % 随机破坏网络 p = 0.1; % 破坏比例 G1_attack = rmedge(G1, randperm(numedges(G1), round(p*numedges(G1)))); % 随机删除边 G2_attack = rmnode(G2, randperm(numnodes(G2), round(p*numnodes(G2)))); % 随机删除节点 S1 = conncomp(G1_attack); % 最大连通性 S2 = conncomp(G2_attack); L1 = mean(distances(G1_attack)); % 平均路径长度 L2 = mean(distances(G2_attack)); E1 = efficiency(G1_attack); % 网络效率 E2 = efficiency(G2_attack); % 输出结果 fprintf('Network 1:\n'); fprintf('k = %.2f, c = %.2f, d = %d\n', k1, c1, d1); fprintf('S = %d, L = %.2f, E = %.2f\n', max(S1), L1, E1); fprintf('Network 2:\n'); fprintf('k = %.2f, c = %.2f, d = %d\n', k2, c2, d2); fprintf('S = %d, L = %.2f, E = %.2f\n', max(S2), L2, E2); % 绘制网络图 figure; subplot(1,2,1); plot(G1); title('Network 1'); subplot(1,2,2); plot(G2); title('Network 2');

相关推荐

如何将a1,a2,f1,f2保存在txt文件中:m0=2 m=2 N=20 x1=100rand(1,m0); y1=100rand(1,m0); x2=100rand(1,m0); y2=100rand(1,m0); for i=1:N z11(i)=10 end z1=z11' for i=1:N z22(i)=90 end z2=z22' %for i=1:N %z1(i)=10 %end %for i=1:N %z2(i)=90 %end for i=1:m0 for j=i+1:m0 p1=rand(1,1); p2=rand(1,1); if p1>0.5 a1(i,j)=1; a1(j,i)=0; end if p2>0.5 a2(i,j)=1; a2(j,i)=0; end end end for k=m0+1:N M=size(a1,1);p=zeros(1,M); M1=size(a2,1);p1=zeros(1,M1); x0=100rand(1,1);y0=100rand(1,1); x1(k)=x0;y1(k)=y0; x2(k)=x0;y2(k)=y0; if length(find(a1==1))==0 p(:)=1/M; else for i=1:M p(i)=length(a1(i,:)==1)/length(find(a1==1)); end if length(find(a2==1))==0 p1(:)=1/M1; else for i=1:M1 p1(i)=length(a2(i,:)==1)/length(find(a2==1)); end end end pp=cumsum(p); pp1=cumsum(p1); for i=1:m random_data=rand(1,1); random_data1=rand(1,1); aa=find(pp>=random_data);jj=aa(1); aa1=find(pp1>=random_data1);jj1=aa1(1); a1(k,jj)=1; a1(jj,k)=1; a2(k,jj1)=1; a2(jj1,k)=1; end end % 计算每条边的流量矩阵 for i=1:N for j=1:N if a1(i,j)==1 % 如果节点i和节点j之间有边,则计算其流量矩阵 if i<=m0 && j<=m0 % 如果是起始节点之间的边,则流量为10 f1(i,j)=10; else % 否则,根据节点i和节点j之间的距离计算流量 d=sqrt((x1(i)-x1(j))^2+(y1(i)-y1(j))^2); f1(i,j)=z1(i)*z1(j)/d; end else f1(i,j)=0; end if a2(i,j)==1 % 如果节点i和节点j之间有边,则计算其流量矩阵 if i<=m0 && j<=m0 % 如果是起始节点之间的边,则流量为90 f2(i,j)=90; else % 否则,根据节点i和节点j之间的距离计算流量 d=sqrt((x2(i)-x2(j))^2+(y2(i)-y2(j))^2); f2(i,j)=z2(i)*z2(j)/d; end else f2(i,j)=0; end end end

最新推荐

recommend-type

基于springboot+vue+MySQL实现的在线考试系统+源代码+文档

web期末作业设计网页 基于springboot+vue+MySQL实现的在线考试系统+源代码+文档
recommend-type

318_面向物联网机器视觉的目标跟踪方法设计与实现的详细信息-源码.zip

提供的源码资源涵盖了安卓应用、小程序、Python应用和Java应用等多个领域,每个领域都包含了丰富的实例和项目。这些源码都是基于各自平台的最新技术和标准编写,确保了在对应环境下能够无缝运行。同时,源码中配备了详细的注释和文档,帮助用户快速理解代码结构和实现逻辑。 适用人群: 这些源码资源特别适合大学生群体。无论你是计算机相关专业的学生,还是对其他领域编程感兴趣的学生,这些资源都能为你提供宝贵的学习和实践机会。通过学习和运行这些源码,你可以掌握各平台开发的基础知识,提升编程能力和项目实战经验。 使用场景及目标: 在学习阶段,你可以利用这些源码资源进行课程实践、课外项目或毕业设计。通过分析和运行源码,你将深入了解各平台开发的技术细节和最佳实践,逐步培养起自己的项目开发和问题解决能力。此外,在求职或创业过程中,具备跨平台开发能力的大学生将更具竞争力。 其他说明: 为了确保源码资源的可运行性和易用性,特别注意了以下几点:首先,每份源码都提供了详细的运行环境和依赖说明,确保用户能够轻松搭建起开发环境;其次,源码中的注释和文档都非常完善,方便用户快速上手和理解代码;最后,我会定期更新这些源码资源,以适应各平台技术的最新发展和市场需求。
recommend-type

FPGA Verilog 计算信号频率,基础时钟100Mhz,通过锁相环ip核生成200Mhz检测时钟,误差在10ns

结合等精度测量原理和原理示意图可得:被测时钟信号的时钟频率fx的相对误差与被测时钟信号无关;增大“软件闸门”的有效范围或者提高“标准时钟信号”的时钟频率fs,可以减小误差,提高测量精度。 实际闸门下被测时钟信号周期数为X,设被测信号时钟周期为Tfx,它的时钟频率fx = 1/Tfx,由此可得等式:X * Tfx = X / fx = Tx(实际闸门)。 其次,将两等式结合得到只包含各自时钟周期计数和时钟频率的等式:X / fx = Y / fs = Tx(实际闸门),等式变换,得到被测时钟信号时钟频率计算公式:fx = X * fs / Y。 最后,将已知量标准时钟信号时钟频率fs和测量量X、Y带入计算公式,得到被测时钟信号时钟频率fx。
recommend-type

校园二手商品交易系统三.wmv

校园二手商品交易系统三.wmv
recommend-type

基于Spring Security的OAuth2.1和OIDC1.0认证服务器设计源码

本源码提供了一个基于Spring Security框架的OAuth2.1和OIDC1.0认证服务器实现。项目包含102个文件,主要使用Java(51个文件)、JSP(12个文件)、XML(10个文件)、HTML(9个文件)等编程语言和标记语言开发。此外,还包括了properties、txt、ddl、css、ico等格式的文件。这个认证服务器项目旨在实现现代的身份验证和授权机制,支持OAuth 2.1和OpenID Connect 1.0协议,适用于需要在应用程序中实现安全认证的开发者。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

hive中 的Metastore

Hive中的Metastore是一个关键的组件,它用于存储和管理Hive中的元数据。这些元数据包括表名、列名、表的数据类型、分区信息、表的存储位置等信息。Hive的查询和分析都需要Metastore来管理和访问这些元数据。 Metastore可以使用不同的后端存储来存储元数据,例如MySQL、PostgreSQL、Oracle等关系型数据库,或者Hadoop分布式文件系统中的HDFS。Metastore还提供了API,使得开发人员可以通过编程方式访问元数据。 Metastore的另一个重要功能是跟踪表的版本和历史。当用户对表进行更改时,Metastore会记录这些更改,并且可以让用户回滚到
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。