bp神经网络回归正则化代码
时间: 2023-07-26 11:49:00 浏览: 99
下面是一个示例 BP 神经网络回归正则化代码,其中使用 L2 正则化来减小模型的复杂度并避免过拟合:
```
import numpy as np
class NeuralNetwork:
def __init__(self, input_dim, hidden_dim, output_dim, reg_lambda=0.01):
# 初始化网络参数
self.input_dim = input_dim
self.hidden_dim = hidden_dim
self.output_dim = output_dim
self.reg_lambda = reg_lambda
# 初始化权重和偏置
self.weights1 = np.random.randn(self.input_dim, self.hidden_dim) / np.sqrt(self.input_dim)
self.bias1 = np.zeros((1, self.hidden_dim))
self.weights2 = np.random.randn(self.hidden_dim, self.output_dim) / np.sqrt(self.hidden_dim)
self.bias2 = np.zeros((1, self.output_dim))
def forward(self, X):
# 前向传播
self.z1 = np.dot(X, self.weights1) + self.bias1
self.a1 = np.tanh(self.z1)
self.z2 = np.dot(self.a1, self.weights2) + self.bias2
self.y_hat = self.z2
return self.y_hat
def backward(self, X, y, y_hat):
# 反向传播
error = y_hat - y
delta2 = error
delta1 = np.dot(delta2, self.weights2.T) * (1 - np.power(self.a1, 2))
# 计算梯度
grad_weights2 = np.dot(self.a1.T, delta2) + self.reg_lambda * self.weights2
grad_bias2 = np.sum(delta2, axis=0, keepdims=True)
grad_weights1 = np.dot(X.T, delta1) + self.reg_lambda * self.weights1
grad_bias1 = np.sum(delta1, axis=0)
# 更新权重和偏置
self.weights2 -= learning_rate * grad_weights2
self.bias2 -= learning_rate * grad_bias2
self.weights1 -= learning_rate * grad_weights1
self.bias1 -= learning_rate * grad_bias1
def train(self, X, y, epochs=10000, learning_rate=0.01):
for i in range(epochs):
# 前向传播
y_hat = self.forward(X)
# 反向传播
self.backward(X, y, y_hat)
# 计算损失函数和精度
loss = np.mean(np.square(y - y_hat))
if i % 1000 == 0:
print("Epoch:", i, "Loss:", loss)
```
在上面的代码中,`reg_lambda` 参数表示正则化强度。在前向传播和反向传播过程中,我们需要计算正则化项的梯度,并将其加入到原始梯度中。在计算梯度时,我们需要将权重矩阵除以样本数,以避免梯度爆炸或消失的问题。
阅读全文