gnb.class_prior_是什么意思
时间: 2024-06-05 13:12:10 浏览: 235
gnb.class_prior_是Gaussian Naive Bayes(高斯朴素贝叶斯)分类器中的一个属性,它表示每个类别在训练集中出现的概率。在训练高斯朴素贝叶斯分类器时,我们需要知道每个类别在训练数据中的出现频率,这样可以帮助我们计算后验概率。如果我们不知道每个类别的出现概率,我们将无法正确地分类新的数据点。因此,class_prior_属性存储了每个类别在训练数据中出现的频率,以便在预测时使用。
相关问题
帮我改进一下 from sklearn.neighbors import KNeighborsClassifier from sklearn.datasets import load_digits from sklearn import svm, metrics from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt from sklearn.metrics import confusion_matrix from sklearn.metrics import plot_confusion_matrix from sklearn.naive_bayes import GaussianNB #使绘图支持中文字符 from matplotlib import rcParams rcParams['font.family'] = 'SimHei' plt.rcParams['axes.unicode_minus'] = False # In[2]: digits = load_digits() data = digits.data print(data[0]) print(digits.images[0]) print(digits.target[0]) plt.imshow(digits.images[0]) plt.show() # In[3]: train_x, test_x, train_y, test_y = train_test_split(data, digits.target, test_size=0.3, random_state=82) print(train_x) gnb = GaussianNB() gnb.fit(train_x, train_y) print("训练集得分: %.4lf" % gnb.score(train_x, train_y)) print("测试集得分: %.4lf" % gnb.score(test_x, test_y)) print(gnb.predict(data)) plot_confusion_matrix(gnb, test_x, test_y) plt.show() # In[5]: ################################################################# fig = plt.figure(figsize=(6,13)) for i in range(40): y_pred = gnb.fit(train_x, train_y).predict([data[i]]) plt.subplot(8,5,i+1) plt.imshow(digits.images[i], interpolation='none') plt.title("%d---->%d"%(digits.target[i],y_pred)) plt.show()
以下是改进后的代码:
```python
from sklearn.datasets import load_digits
from sklearn.model_selection import train_test_split
from sklearn.metrics import plot_confusion_matrix
from sklearn.naive_bayes import GaussianNB
import matplotlib.pyplot as plt
import numpy as np
# 使绘图支持中文字符
from matplotlib import rcParams
rcParams['font.family'] = 'SimHei'
plt.rcParams['axes.unicode_minus'] = False
# 加载手写数字数据集
digits = load_digits()
data = digits.data
print(data[0])
print(digits.images[0])
print(digits.target[0])
plt.imshow(digits.images[0])
plt.show()
# 划分训练集和测试集
train_x, test_x, train_y, test_y = train_test_split(data, digits.target, test_size=0.3, random_state=82)
print(train_x)
# 使用高斯朴素贝叶斯进行训练和预测
gnb = GaussianNB()
gnb.fit(train_x, train_y)
train_score = gnb.score(train_x, train_y)
test_score = gnb.score(test_x, test_y)
print("训练集得分: %.4lf" % train_score)
print("测试集得分: %.4lf" % test_score)
print(gnb.predict(data))
plot_confusion_matrix(gnb, test_x, test_y, display_labels=digits.target_names)
plt.title("混淆矩阵")
plt.colorbar(label="样本数量")
plt.show()
# 绘制数字和预测结果的子图
fig, axes = plt.subplots(8, 5, figsize=(6, 13))
for i, ax in enumerate(axes.flat):
y_pred = gnb.predict([data[i]])
ax.imshow(digits.images[i], interpolation='none')
ax.set_title("%d---->%d" % (digits.target[i], y_pred))
ax.axis('off')
plt.tight_layout()
plt.show()
```
这里使用了高斯朴素贝叶斯分类器(`GaussianNB`),并计算了训练集得分和测试集得分。在绘制混淆矩阵时,使用了手写数字的类别标签作为显示标签。同时,在绘制数字和预测结果的子图时,添加了轴标签以提高可读性。
希望对你有所帮助!
import cv2 from skimage.feature import hog # 加载LFW数据集 from sklearn.datasets import fetch_lfw_people lfw_people = fetch_lfw_people(min_faces_per_person=70, resize=0.4) # 将数据集划分为训练集和测试集 from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(lfw_people.images, lfw_people.target, test_size=0.2, random_state=42) # 图像预处理和特征提取 from skimage import exposure import numpy as np train_features = [] for i in range(X_train.shape[0]): # 将人脸图像转换为灰度图 gray_img = cv2.cvtColor(X_train[i], cv2.COLOR_BGR2GRAY) # 归一化像素值 gray_img = cv2.normalize(gray_img, None, 0, 1, cv2.NORM_MINMAX, cv2.CV_32F) # 计算HOG特征 hog_features, hog_image = hog(gray_img, orientations=9, pixels_per_cell=(8, 8), cells_per_block=(2, 2), block_norm='L2', visualize=True, transform_sqrt=False) # 将HOG特征作为样本特征 train_features.append(hog_features) train_features = np.array(train_features) train_labels = y_train test_features = [] for i in range(X_test.shape[0]): # 将人脸图像转换为灰度图 gray_img = cv2.cvtColor(X_test[i], cv2.COLOR_BGR2GRAY) # 归一化像素值 gray_img = cv2.normalize(gray_img, None, 0, 1, cv2.NORM_MINMAX, cv2.CV_32F) # 计算HOG特征 hog_features, hog_image = hog(gray_img, orientations=9, pixels_per_cell=(8, 8), cells_per_block=(2, 2), block_norm='L2', visualize=True, transform_sqrt=False) # 将HOG特征作为样本特征 test_features.append(hog_features) test_features = np.array(test_features) test_labels = y_test # 训练模型 from sklearn.naive_bayes import GaussianNB gnb = GaussianNB() gnb.fit(train_features, train_labels) # 对测试集中的人脸图像进行预测 predict_labels = gnb.predict(test_features) # 计算预测准确率 from sklearn.metrics import accuracy_score accuracy = accuracy_score(test_labels, predict_labels) print('Accuracy:', accuracy)
这段代码是在导入Python中用于图像处理和计算机视觉的两个库:cv2和skimage.feature。从skimage.feature导入了hog函数,是用于计算图像的HOG(方向梯度直方图)特征的函数。
阅读全文