class Model(nn.Module): def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, anchors=None): # model, input channels, number of classes super().__init__() if isinstance(cfg, dict): self.yaml = cfg # model dict else: # is *.yaml import yaml # for torch hub self.yaml_file = Path(cfg).name with open(cfg) as f: self.yaml = yaml.safe_load(f) # model dict # Define model ch = self.yaml['ch'] = self.yaml.get('ch', ch) # input channels if nc and nc != self.yaml['nc']: LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}") self.yaml['nc'] = nc # override yaml value if anchors: LOGGER.info(f'Overriding model.yaml anchors with anchors={anchors}') self.yaml['anchors'] = round(anchors) # override yaml value self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) # model, savelist self.names = [str(i) for i in range(self.yaml['nc'])] # default names self.inplace = self.yaml.get('inplace', True)
时间: 2023-06-17 14:08:56 浏览: 208
uboot启动lowlevel_init.S汇编代码解析
3星 · 编辑精心推荐
这是一个使用 PyTorch 框架实现的 YOLOv5 模型,用于目标检测任务。模型通过解析传入的配置文件来定义模型结构,并使用输入的参数来覆盖配置文件中的一些值,例如输入通道数、类别数和锚点等。模型定义了一个 `Model` 类,继承自 PyTorch 中的 `nn.Module` 类。在 `__init__` 方法中,模型首先判断传入的配置文件是字典类型还是 yaml 文件,然后解析配置文件中的值来定义模型结构。模型中的核心是 `parse_model` 函数,它会根据配置文件中的内容来构建网络模型,并返回模型和一个保存列表。模型的输出是目标的分类、位置和置信度等信息。
阅读全文