WARNING Unable to automatically guess model task, assuming 'task=detect'. Explicitly define task for your model, i.e. 'task=detect', 'segment', 'classify', or 'pose'. from n params module arguments Traceback (most recent call last): File "d:/Python/ultralytics-main/val.py", line 6, in <module> data = YOLO('D:/Python/ultralytics-main/traindata3/data.yaml') File "d:\Python\ultralytics-main\ultralytics\yolo\engine\model.py", line 105, in __init__ self._new(model, task) File "d:\Python\ultralytics-main\ultralytics\yolo\engine\model.py", line 138, in _new self.model = TASK_MAP[self.task][0](cfg_dict, verbose=verbose and RANK == -1) # build model File "d:\Python\ultralytics-main\ultralytics\nn\tasks.py", line 195, in __init__ self.model, self.save = parse_model(deepcopy(self.yaml), ch=ch, verbose=verbose) # model, savelist File "d:\Python\ultralytics-main\ultralytics\nn\tasks.py", line 496, in parse_model for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args KeyError: 'backbone'
时间: 2024-04-26 20:20:56 浏览: 1076
根据你提供的信息,看起来是一个YOLO模型的训练代码中出现了错误。错误信息中提到了缺少关键字'backbone',你需要检查一下你的代码中是否正确设置了模型的backbone部分。此外,你也可以确认一下你的数据集配置文件data.yaml是否正确。如果问题仍然存在,可以提供更多的代码信息以及完整的错误信息,这样我可以更好地帮助你解决问题。
相关问题
Unable to find a @SpringBootConfiguration, you need to use @ContextConfiguration or @SpringBootTest(classes=...) with your test
If you are encountering the error message "Unable to find a @SpringBootConfiguration, you need to use @ContextConfiguration or @SpringBootTest(classes=...) with your test," it means that Spring Boot is unable to detect the configuration class for your test.
To resolve this issue, you have a few options:
1. Use @ContextConfiguration: Annotate your test class with @ContextConfiguration and specify the location of your configuration file(s). For example:
```java@ContextConfiguration(locations = "classpath:applicationContext.xml")
public class MyTest {
// ...
}
```
2. Use @SpringBootTest(classes=...): Annotate your test class with @SpringBootTest and specify the configuration class(es) using the "classes" attribute. For example:
```java@SpringBootTest(classes = MyConfiguration.class)
public class MyTest {
// ...
}
```
Make sure to replace `MyConfiguration` with the actual class that contains your Spring Boot configuration.
3. Check your test package structure: Ensure that your test class is located in the same or a sub-package of your main application class. By default, Spring Boot will automatically scan for configuration classes within its package and sub-packages.
By applying one of these solutions, you should be able to resolve the error and properly configure Spring Boot for your tests.
给出这个伪代码的具体实现import numpy as np import cv2 Load image img = cv2.imread("input.jpg") Convert to grayscale gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) Detect edges edges = cv2.Canny(gray, 100, 200) Display image with edges cv2.imshow("Image with Edges", edges) Automatically select edge points using HoughLines method lines = cv2.HoughLinesP(edges, 1, np.pi/180, threshold=100, minLineLength=50, maxLineGap=10) points = [] for line in lines: x1, y1, x2, y2 = line[0] points.append((x1, y1)) points.append((x2, y2)) Generate TSP art and tsplib dataset n = len(points) distances = np.zeros((n, n)) for i in range(n): for j in range(n): if i != j: distances[i][j] = np.sqrt((points[i][0] - points[j][0]) ** 2 + (points[i][1] - points[j][1]) ** 2) Write tsplib dataset with open("output.tsp", "w") as f: f.write("NAME: output\n") f.write("TYPE: TSP\n") f.write("DIMENSION: {}\n".format(n)) f.write("EDGE_WEIGHT_TYPE: EUC_2D\n") f.write("NODE_COORD_SECTION\n") for i in range(n): f.write("{} {} {}\n".format(i+1, points[i][0], points[i][1])) f.write("EOF\n") Display TSP art tsp_art = np.zeros_like(gray) path = list(range(n)) + [0] for i in range(n): cv2.line(tsp_art, points[path[i]], points[path[i+1]], (255, 255, 255), thickness=1) cv2.imshow("TSP Art", tsp_art) cv2.waitKey(0) cv2.destroyAllWindows()
这段伪代码的实现基于Python和OpenCV库,可以使用以下步骤完成:
1. 导入必要的库
```
import numpy as np
import cv2
```
2. 加载图像并转换为灰度图像
```
img = cv2.imread("input.jpg")
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
```
3. 检测图像中的边缘
```
edges = cv2.Canny(gray, 100, 200)
```
4. 显示带有边缘的图像
```
cv2.imshow("Image with Edges", edges)
```
5. 使用HoughLinesP方法自动选择边缘点
```
lines = cv2.HoughLinesP(edges, 1, np.pi/180, threshold=100, minLineLength=50, maxLineGap=10)
points = []
for line in lines:
x1, y1, x2, y2 = line[0]
points.append((x1, y1))
points.append((x2, y2))
```
6. 生成TSP art和tsplib数据集
```
n = len(points)
distances = np.zeros((n, n))
for i in range(n):
for j in range(n):
if i != j:
distances[i][j] = np.sqrt((points[i][0] - points[j][0]) ** 2 + (points[i][1] - points[j][1]) ** 2)
with open("output.tsp", "w") as f:
f.write("NAME: output\n")
f.write("TYPE: TSP\n")
f.write("DIMENSION: {}\n".format(n))
f.write("EDGE_WEIGHT_TYPE: EUC_2D\n")
f.write("NODE_COORD_SECTION\n")
for i in range(n):
f.write("{} {} {}\n".format(i+1, points[i][0], points[i][1]))
f.write("EOF\n")
```
7. 显示TSP art
```
tsp_art = np.zeros_like(gray)
path = list(range(n)) + [0]
for i in range(n):
cv2.line(tsp_art, points[path[i]], points[path[i+1]], (255, 255, 255), thickness=1)
cv2.imshow("TSP Art", tsp_art)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
阅读全文
相关推荐
















