data = DataLoader(moldata, batch_size=128, shuffle=True, drop_last=True, collate_fn=MolData.collate_fn)
时间: 2024-06-02 22:11:49 浏览: 83
这段代码是使用 PyTorch 中的 DataLoader 对一个包含分子数据的数据集进行批量处理。具体来说,参数 `moldata` 是一个包含分子数据的列表或数组,`batch_size` 指定了每个批次的大小,`shuffle` 指定是否对数据进行洗牌,`drop_last` 指定是否在数据集大小不能被批次大小整除时丢弃最后一个不完整的批次。`collate_fn` 参数指定了一个函数,用于将单个数据样本转换为一个批次。在这个代码段中,`MolData.collate_fn` 是一个自定义的函数,用于将分子数据转换为 PyTorch 的张量,并将它们打包成一个批次。
相关问题
# build dataset train_dataset = NERDataset(word_train, label_train, config) dev_dataset = NERDataset(word_dev, label_dev, config) # get dataset size train_size = len(train_dataset) # build data_loader train_loader = DataLoader(train_dataset, batch_size=config.batch_size, shuffle=True, collate_fn=train_dataset.collate_fn) dev_loader = DataLoader(dev_dataset, batch_size=config.batch_size, shuffle=True, collate_fn=dev_dataset.collate_fn) # Prepare model device = config.device model = BertNER.from_pretrained(config.bert_model, num_labels=len(config.label2id)) model.to(device)
上述代码是基于PyTorch框架构建命名实体识别模型的代码。它通过调用NERDataset类来构建训练集和验证集,并使用DataLoader类来创建数据批次,方便模型的训练和验证。同时,代码中使用了预训练的BERT模型,并根据标签数来初始化了一个BertNER模型,用于命名实体识别任务的训练。最后,将模型移动到指定的设备上(如GPU),并准备进行训练。
train_dataset = LegacyPPIDataset(mode='train') valid_dataset = LegacyPPIDataset(mode='valid') test_dataset = LegacyPPIDataset(mode='test') train_dataloader = DataLoader(train_dataset, batch_size=batch_size, collate_fn=collate) valid_dataloader = DataLoader(valid_dataset, batch_size=batch_size, collate_fn=collate) test_dataloader = DataLoader(test_dataset, batch_size=batch_size, collate_fn=collate) n_classes = train_dataset._labels.shape[1] num_feats = train_dataset.features.shape[1]
这段代码是用来加载和处理数据集的。其中`LegacyPPIDataset`是一个自定义的数据集类,用于加载PPID(Protein-Protein Interaction)数据集。`mode`参数指定了数据集的模式,可以是训练集、验证集或测试集。`DataLoader`是一个PyTorch中用于批量处理数据的工具,将数据集分成一批一批的,方便模型训练。`batch_size`参数指定了每个批次的大小。`collate`参数是一个自定义的函数,用于将数据集中的样本转换成模型可以处理的格式。`n_classes`和`num_feats`分别表示类别数和特征数量。这段代码的作用是将数据集加载到内存中,方便模型训练。
阅读全文