如何用单调队列的思想实现小明有一个大小为 N \times MN×M 的矩阵, 可以理解为一个 NN 行 MM 列的二维数组。 我们定义一个矩阵 mm 的稳定度 f(m)f(m) 为 f(m)=\max (m)-\min (m)f(m)=max(m)−min(m), 其中 \max (m)max(m) 表示矩阵 mm 中的最大值, \min (m)min(m) 表示矩阵 mm 中的最小值。现在小明想要从这 个矩阵中找到一个稳定度不大于 limit 的子矩阵, 同时他还希望这个子矩阵的面积越大越好 (面积可以理解为矩阵中元素个数)。 子矩阵定义如下: 从原矩阵中选择一组连续的行和一组连续的列, 这些行列交点上的元素组成的矩阵即为一个子矩阵。 输入格式 第一行输入两个整数 N, MN,M, 表示矩阵的大小。 接下来 NN 行, 侮行输入 MM 个整数,表示这个矩阵。 最后一行输入一个整数 limit, 表示限制。 辎出格式 输出一个整数. 分别表示小明选择的子矩阵的最大面积。
时间: 2023-02-09 19:46:23 浏览: 106
使用单调队列的思想来实现此题的做法如下:
首先,将矩阵看作是 $N$ 个长度为 $M$ 的一维数组,则本题就是在求一个最大的子段,使得子段的最大值减去最小值不超过给定的限制 $limit$。
为了求出最大的子段,我们可以使用单调队列来维护每个子段的最大值和最小值。
具体地,我们可以用两个单调队列来分别维护最大值和最小值,每次将新的元素加入单调队列之前,先将队列中所有小于新元素的元素弹出,这样就能保证单调队列中的元素始终是单调递增或单调递减的。
在求出最大值和最小值之后,我们就可以判断当前子段的稳定度是否小于给定的限制 $limit$,如果小于,则将子段的面积累加到答案中,否则将子段的最小值弹出单调队列,并继续查找下一个子段。
代码如下:
```
int n, m, limit;
int a[maxn][maxm];
int l[maxn], r[maxn]; // 单调队列
int st[maxn], top;
int main()
{
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i ++ )
for (int j = 1; j <= m; j ++ )
scanf("%d", &a[i][j]);
相关问题
如何用单调队列的思想Java实现小明有一个大小为 N \times MN×M 的矩阵, 可以理解为一个 NN 行 MM 列的二维数组。 我们定义一个矩阵 mm 的稳定度 f(m)f(m) 为 f(m)=\max (m)-\min (m)f(m)=max(m)−min(m), 其中 \max (m)max(m) 表示矩阵 mm 中的最大值, \min (m)min(m) 表示矩阵 mm 中的最小值。现在小明想要从这 个矩阵中找到一个稳定度不大于 limit 的子矩阵, 同时他还希望这个子矩阵的面积越大越好 (面积可以理解为矩阵中元素个数)。 子矩阵定义如下: 从原矩阵中选择一组连续的行和一组连续的列, 这些行列交点上的元素组成的矩阵即为一个子矩阵。 输入格式 第一行输入两个整数 N, MN,M, 表示矩阵的大小。 接下来 NN 行, 侮行输入 MM 个整数,表示这个矩阵。 最后一行输入一个整数 limit, 表示限制。 辎出格式 输出一个整数. 分别表示小明选择的子矩阵的最大面积。
这道题的思路是使用单调队列来维护每一行的最大值和最小值。
首先,我们建立一个单调队列,队列中存储的是每一行的最大值和最小值的下标。然后,对于每一行,我们求出它的最大值和最小值,然后将它们的下标加入到单调队列中。每当我们求出一个新的子矩阵时,我们就从单调队列的头部弹出最小值和最大值的下标,并且比较它们的差值是否小于等于 limit。如果是,就更新答案。
下面是使用 Java 实现的代码:
```
import java.util.Deque;
import java.util.LinkedList;
import java.util.Scanner;
public class Main {
static int N = 1005, M = 1005;
static int[][] a = new int[N][M];
static int[] qmax = new int[M];
static int[] qmin = new int[M];
static int[] maxn = new int[M];
static int[] minn = new int[M];
static int[] sum = new int[N];
static int[] h = new int[N];
static int res;
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int m = sc.nextInt();
int limit = sc.nextInt();
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
a[i][j] = sc.nextInt();
}
}
for (int i = 1; i <= n; i++) {
int head = 1, tail = 0;
for (int j = 1; j <= m; j++) {
while (head <= tail && qmax[tail] < j - h[tail] + 1) tail--;
while (head <= tail && a[i][qmax[tail]] <= a[i][j]) tail--;
qmax[++tail] = j;
h[tail] = j - qmax[tail - 1];
}
如何用单调队列的思想实现(不需要给解释直接给代码)小明有一个大小为 N \times MN×M 的矩阵, 可以理解为一个 NN 行 MM 列的二维数组。 我们定义一个矩阵 mm 的稳定度 f(m)f(m) 为 f(m)=\max (m)-\min (m)f(m)=max(m)−min(m), 其中 \max (m)max(m) 表示矩阵 mm 中的最大值, \min (m)min(m) 表示矩阵 mm 中的最小值。现在小明想要从这 个矩阵中找到一个稳定度不大于 limit 的子矩阵, 同时他还希望这个子矩阵的面积越大越好 (面积可以理解为矩阵中元素个数)。 子矩阵定义如下: 从原矩阵中选择一组连续的行和一组连续的列, 这些行列交点上的元素组成的矩阵即为一个子矩阵。 输入格式 第一行输入两个整数 N, MN,M, 表示矩阵的大小。 接下来 NN 行, 侮行输入 MM 个整数,表示这个矩阵。 最后一行输入一个整数 limit, 表示限制。 辎出格式 输出一个整数. 分别表示小明选择的子矩阵的最大面积。(不需要给解释,直接给代码就可以了)
代码如下:
```
#include <bits/stdc++.h>
using namespace std;
const int N = 1000010;
int n, m, limit;
int a[N], q[N];
int main()
{
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i ++ )
for (int j = 1; j <= m; j ++ )
scanf("%d", &a[j]);
scanf("%d", &limit);
int res = 0;
for (int l = 1; l <= m; l ++ )
{
int hh = 0, tt = -1;
for (int r = l; r <= m; r ++ )
{
while (hh <= tt && a[q[tt]] >= a[r]) tt -- ;
q[ ++ tt] = r;
while (hh <= tt && a[q[hh]] <= a[r] - limit) hh ++ ;
if (hh <= tt) res = max(res, (r - l + 1) * (a[q[hh]] - a[q[tt]] <= limit ? r - q[hh] + 1 : q[hh] - l));
}
}
printf("%d\n", res);
return 0;
}
```
需要注意的是,上述代码是求出矩阵中的最大子矩阵的面积,如果要求出稳定度最大的子矩阵,需要改变判断条件。
阅读全文