LM算法python求解非线性方程组
时间: 2023-09-01 12:13:01 浏览: 271
LM算法是一种非线性最小二乘算法,可以用于求解非线性方程组。以下是一个用Python实现LM算法求解非线性方程组的示例代码:
```python
import numpy as np
def fun(x):
return np.array([
x[0] + 2 * x[1] - 2,
x[0] ** 2 + 4 * x[1] ** 2 - 4
])
def jac(x):
return np.array([
[1, 2],
[2 * x[0], 8 * x[1]]
])
def LM(fun, jac, x0, max_iter=100, tol=1e-6, mu=1.0):
x = x0.copy()
f = fun(x)
J = jac(x)
A = J.T @ J + mu * np.eye(len(x))
g = J.T @ f
v = np.linalg.solve(A, -g)
x_new = x + v
f_new = fun(x_new)
rho = (np.linalg.norm(f) ** 2 - np.linalg.norm(f_new) ** 2) / (v.T @ (mu * v - g))
if rho > 0:
x = x_new
f = f_new
J = jac(x)
A = J.T @ J + mu * np.eye(len(x))
g = J.T @ f
if np.linalg.norm(g) < tol:
return x
else:
mu *= max(1 / 3, 1 - (2 * rho - 1) ** 3)
else:
mu *= 4
for i in range(max_iter):
v = np.linalg.solve(A, -g)
x_new = x + v
f_new = fun(x_new)
rho = (np.linalg.norm(f) ** 2 - np.linalg.norm(f_new) ** 2) / (v.T @ (mu * v - g))
if rho > 0:
x = x_new
f = f_new
J = jac(x)
A = J.T @ J + mu * np.eye(len(x))
g = J.T @ f
if np.linalg.norm(g) < tol:
return x
else:
mu *= max(1 / 3, 1 - (2 * rho - 1) ** 3)
else:
mu *= 4
return x
x0 = np.array([1, 1])
x = LM(fun, jac, x0)
print(x)
```
这个例子中,我们要求解的非线性方程组是:
$$
\begin{aligned}
x_1 + 2x_2 &= 2 \\
x_1^2 + 4x_2^2 &= 4
\end{aligned}
$$
其中,$x_1$和$x_2$是未知变量。我们定义一个函数`fun`来表示这个方程组,另外还需要定义一个求导的函数`jac`。在LM算法的主函数中,我们首先需要对$x$求解$f$和$J$,然后构造矩阵$A$和向量$g$,并求解$v$。接着,我们计算$\rho$,如果$\rho$大于0,则说明$x$可以更新为$x+\Delta x$,否则需要增加$\mu$的值以控制步长。最后,我们在循环中不断迭代,直到达到最大迭代次数或者梯度的范数小于给定的容差值。最终,函数返回求解得到的$x$值。
阅读全文