class Solver(object): def __init__(self, model, data, **kwargs): self.model = model self.X_train = data['X_train'] self.y_train = data['y_train'] self.X_val = data['X_val'] self.y_val = data['y_val'] # Unpack keyword arguments # pop(key, default):删除kwargs对象中key,如果存在该key,返回该key对应的value,否则,返回default值。 self.update_rule = kwargs.pop('update_rule', 'sgd') self.optim_config = kwargs.pop('optim_config', {}) self.lr_decay = kwargs.pop('lr_decay', 1.0) self.batch_size = kwargs.pop('batch_size', 2) self.num_epochs = kwargs.pop('num_epochs', 10) self.print_every = kwargs.pop('print_every', 10) self.verbose = kwargs.pop('verbose', True) if len(kwargs) > 0: extra = ', '.join('"%s"' % k for k in kwargs.keys()) raise ValueError('Unrecognized arguments %s' % extra) if not hasattr(optim, self.update_rule): raise ValueError('Invalid update_rule "%s"' % self.update_rule) self.update_rule = getattr(optim, self.update_rule) self._reset()
时间: 2024-03-11 16:46:09 浏览: 84
matab_sudoku_solver.zip_realtime_sudoku solver
这是一个Python类 Solver,它的构造函数有三个参数:model,data,和kwargs。其中,model是一个模型对象,data包含训练集和验证集的数据,kwargs是一些可选参数。构造函数会将数据集和一些可选参数存储在对象中。这个类的目的是训练模型,它会使用优化器来更新模型的参数。优化器的类型由可选参数update_rule指定,优化器的配置由optim_config指定。还有其他一些可选参数,如学习率衰减率lr_decay、批次大小batch_size、训练轮数num_epochs等。如果有未知的可选参数,构造函数会引发ValueError异常。如果update_rule不是优化器的有效名称,也会引发ValueError异常。最后,构造函数会调用_reset()方法初始化一些训练变量。
阅读全文