氧化钒 MEMS和非晶硅 MEMS 红外探测器

时间: 2024-06-07 10:05:58 浏览: 19
氧化钒 MEMS 和非晶硅 MEMS 红外探测器都是 MEMS(微机电系统)技术应用于红外探测器领域的代表性产品。两者的主要区别在于材料和工艺。 氧化钒 MEMS 红外探测器采用氧化钒作为红外敏感材料,通过 MEMS 技术在硅基底上制造出微小的热电偶结构,用于测量红外辐射能量。氧化钒具有较高的热导率和较低的电阻率,因此能够快速响应红外辐射,具有快速响应、高灵敏度、低功耗等优点。 非晶硅 MEMS 红外探测器则采用非晶硅作为红外敏感材料,通过 MEMS 技术在硅基底上制造出微小的热敏电阻结构,用于测量红外辐射能量。非晶硅具有较高的电阻率和较低的热导率,因此能够对红外辐射进行高灵敏度的测量,同时也具有较低的热容和热惯性,使得响应速度更快。 综合来看,氧化钒 MEMS 红外探测器和非晶硅 MEMS 红外探测器各有优劣,并且在不同的应用场景下可能会选择不同的产品。
相关问题

MEMS红外探测器 氧化钒与非晶硅 的优劣势

MEMS红外探测器中常用的材料包括氧化钒和非晶硅,它们各自有优劣势。 氧化钒是一种无机化合物,具有较高的热灵敏度和较好的机械性能,可以在高温环境下运行。它的响应时间快,精度高,对于较高温度下的红外辐射有良好的响应。此外,氧化钒材料的价格相对较低,制备工艺比较简单,因此在MEMS红外探测器中得到了广泛应用。 非晶硅是一种无晶体结构的硅材料,具有较高的热灵敏度和响应速度,同时还具有较好的机械稳定性和抗辐射性能。非晶硅材料的响应频率范围宽,可以覆盖红外光谱的很大一部分,因此在红外成像技术中得到了广泛应用。此外,非晶硅材料的制备工艺比较简单,可以通过化学气相沉积等方法制备。 综上所述,氧化钒和非晶硅在MEMS红外探测器中都有广泛的应用,选择哪种材料取决于具体应用场景和需求。

MEMS红外探测器 FAB工艺

MEMS红外探测器的FAB工艺主要包括以下几个步骤: 1. 基片清洗:将硅基片放入清洗机中清洗,去除表面的油脂、杂质等。 2. 氧化:将清洗后的硅基片放入氧化炉中加热,形成一个氧化硅层,作为后续工艺的保护层。 3. 光刻:将光刻胶涂覆在氧化硅层上,通过光刻机的曝光和显影,形成所需的图形。 4. 金属蒸镀:将金属材料蒸镀在基片上,形成导电电极和热电偶。 5. 硅衬底刻蚀:利用化学反应将硅基片上不需要的部分刻蚀掉,形成MEMS结构的薄膜。 6. 热处理:将MEMS红外探测器放入高温炉中进行热处理,使其性能稳定。 7. 包封:在MEMS红外探测器周围封装一个保护层,以保护其不受外部环境影响。 以上步骤是MEMS红外探测器FAB工艺中的主要步骤,具体工艺流程和参数需要根据实际情况进行调整。

相关推荐

最新推荐

recommend-type

MEMS麦克风工作原理及应用于助听器的前景

麦克风是把声学信号转换为电信号以供助听器音频信号链处理的传感器。有许多技术可用于这种声电转换,但电容麦克风是其中尺寸最小、精度最高的一类麦克风。电容麦克风中的薄膜随着声学信号而运动,这种运动引起电容...
recommend-type

电容式MEMS麦克风读出电路设计

在本文中,我们详细介绍了电容式MEMS麦克风读出电路的设计原理和实现方法,包括背靠背二极管的设计、单位增益缓冲器的设计、电荷泵的设计等。同时,我们还讨论了电容式MEMS麦克风读出电路的优点和缺点,以及在实际...
recommend-type

图解MEMS压力传感器原理与应用

MEMS技术的发展开辟了一个全新的技术领域和产业,采用MEMS技术制作的微传感器、微执行器、微型构件、微机械光学器件、真空微电子器件、电力电子器件等在航空、航天、汽车、生物医学、环境监控、军事以及几乎人们所...
recommend-type

MEMS麦克风的声学设计应用

以高性能和小尺寸为特色的MEMS麦克风特别适用于平板电脑、笔记本电脑、智能手机等消费电子产品。不过,这些产品的麦克风声孔通常隐藏在产品内部,因此,设备厂商必须在外界与麦克风之间设计一个声音路径,以便将声音...
recommend-type

敏芯全新数字PDM输出的MEMS麦克风支持3种工作模式

苏州敏芯微电子技术有限公司近期推出一种新的多模式的数字PDM输出的MEMS麦克风。新的PDM输出数字麦克风,具备3种工作模式,当麦克风工作在普通模式下,产品可以提供最优的性能指标;而在低功耗模式下,麦克风可以在...
recommend-type

利用迪杰斯特拉算法的全国交通咨询系统设计与实现

全国交通咨询模拟系统是一个基于互联网的应用程序,旨在提供实时的交通咨询服务,帮助用户找到花费最少时间和金钱的交通路线。系统主要功能包括需求分析、个人工作管理、概要设计以及源程序实现。 首先,在需求分析阶段,系统明确了解用户的需求,可能是针对长途旅行、通勤或日常出行,用户可能关心的是时间效率和成本效益。这个阶段对系统的功能、性能指标以及用户界面有明确的定义。 概要设计部分详细地阐述了系统的流程。主程序流程图展示了程序的基本结构,从开始到结束的整体运行流程,包括用户输入起始和终止城市名称,系统查找路径并显示结果等步骤。创建图算法流程图则关注于核心算法——迪杰斯特拉算法的应用,该算法用于计算从一个节点到所有其他节点的最短路径,对于求解交通咨询问题至关重要。 具体到源程序,设计者实现了输入城市名称的功能,通过 LocateVex 函数查找图中的城市节点,如果城市不存在,则给出提示。咨询钱最少模块图是针对用户查询花费最少的交通方式,通过 LeastMoneyPath 和 print_Money 函数来计算并输出路径及其费用。这些函数的设计体现了算法的核心逻辑,如初始化每条路径的距离为最大值,然后通过循环更新路径直到找到最短路径。 在设计和调试分析阶段,开发者对源代码进行了严谨的测试,确保算法的正确性和性能。程序的执行过程中,会进行错误处理和异常检测,以保证用户获得准确的信息。 程序设计体会部分,可能包含了作者在开发过程中的心得,比如对迪杰斯特拉算法的理解,如何优化代码以提高运行效率,以及如何平衡用户体验与性能的关系。此外,可能还讨论了在实际应用中遇到的问题以及解决策略。 全国交通咨询模拟系统是一个结合了数据结构(如图和路径)以及优化算法(迪杰斯特拉)的实用工具,旨在通过互联网为用户提供便捷、高效的交通咨询服务。它的设计不仅体现了技术实现,也充分考虑了用户需求和实际应用场景中的复杂性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】基于TensorFlow的卷积神经网络图像识别项目

![【实战演练】基于TensorFlow的卷积神经网络图像识别项目](https://img-blog.csdnimg.cn/20200419235252200.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzM3MTQ4OTQw,size_16,color_FFFFFF,t_70) # 1. TensorFlow简介** TensorFlow是一个开源的机器学习库,用于构建和训练机器学习模型。它由谷歌开发,广泛应用于自然语言
recommend-type

CD40110工作原理

CD40110是一种双四线双向译码器,它的工作原理基于逻辑编码和译码技术。它将输入的二进制代码(一般为4位)转换成对应的输出信号,可以控制多达16个输出线中的任意一条。以下是CD40110的主要工作步骤: 1. **输入与编码**: CD40110的输入端有A3-A0四个引脚,每个引脚对应一个二进制位。当你给这些引脚提供不同的逻辑电平(高或低),就形成一个四位的输入编码。 2. **内部逻辑处理**: 内部有一个编码逻辑电路,根据输入的四位二进制代码决定哪个输出线应该导通(高电平)或保持低电平(断开)。 3. **输出**: 输出端Y7-Y0有16个,它们分别与输入的编码相对应。当特定的
recommend-type

全国交通咨询系统C++实现源码解析

"全国交通咨询系统C++代码.pdf是一个C++编程实现的交通咨询系统,主要功能是查询全国范围内的交通线路信息。该系统由JUNE于2011年6月11日编写,使用了C++标准库,包括iostream、stdio.h、windows.h和string.h等头文件。代码中定义了多个数据结构,如CityType、TrafficNode和VNode,用于存储城市、交通班次和线路信息。系统中包含城市节点、交通节点和路径节点的定义,以及相关的数据成员,如城市名称、班次、起止时间和票价。" 在这份C++代码中,核心的知识点包括: 1. **数据结构设计**: - 定义了`CityType`为short int类型,用于表示城市节点。 - `TrafficNodeDat`结构体用于存储交通班次信息,包括班次名称(`name`)、起止时间(原本注释掉了`StartTime`和`StopTime`)、运行时间(`Time`)、目的地城市编号(`EndCity`)和票价(`Cost`)。 - `VNodeDat`结构体代表城市节点,包含了城市编号(`city`)、火车班次数(`TrainNum`)、航班班次数(`FlightNum`)以及两个`TrafficNodeDat`数组,分别用于存储火车和航班信息。 - `PNodeDat`结构体则用于表示路径中的一个节点,包含城市编号(`City`)和交通班次号(`TraNo`)。 2. **数组和变量声明**: - `CityName`数组用于存储每个城市的名称,按城市编号进行索引。 - `CityNum`用于记录城市的数量。 - `AdjList`数组存储各个城市的线路信息,下标对应城市编号。 3. **算法与功能**: - 系统可能实现了Dijkstra算法或类似算法来寻找最短路径,因为有`MinTime`和`StartTime`变量,这些通常与路径规划算法有关。 - `curPath`可能用于存储当前路径的信息。 - `SeekCity`函数可能是用来查找特定城市的函数,其参数是一个城市名称。 4. **编程语言特性**: - 使用了`#define`预处理器指令来设置常量,如城市节点的最大数量(`MAX_VERTEX_NUM`)、字符串的最大长度(`MAX_STRING_NUM`)和交通班次的最大数量(`MAX_TRAFFIC_NUM`)。 - `using namespace std`导入标准命名空间,方便使用iostream库中的输入输出操作。 5. **编程实践**: - 代码的日期和作者注释显示了良好的编程习惯,这对于代码维护和团队合作非常重要。 - 结构体的设计使得数据组织有序,方便查询和操作。 这个C++代码实现了全国交通咨询系统的核心功能,涉及城市节点管理、交通班次存储和查询,以及可能的路径规划算法。通过这些数据结构和算法,用户可以查询不同城市间的交通信息,并获取最优路径建议。