CrossEntropyLoss(label_smoothing=label_smoothing)
时间: 2024-06-22 18:03:24 浏览: 156
39. 深度学习中的各种tricks_1.0_label_smoothing - 兔角与禅 - CSDN博客1
CrossEntropyLoss(交叉熵损失函数)是深度学习中常用的一种损失函数,特别适用于分类任务,如神经网络中的softmax回归。Label Smoothing是一种技术,用于处理训练过程中的标签噪声或不确定性,它可以提高模型的泛化能力。
当`label_smoothing`参数被设置时(通常取值在0到1之间,比如0.1),它改变了原始的标签分布,使得模型认为每个类别的概率不是绝对的0或1,而是有一定概率的平滑分布。这样做的好处是减少了过拟合的风险,因为模型不会过于依赖某些特定的类别标签。具体来说,假设原本应该为1的概率被分配到各个类别,通常分配一个小的正数epsilon,例如0.1,其余的1减去epsilon均匀分配给其他类别。
CrossEntropyLoss的公式(对于单个样本)可以表示为:
```math
L = -\frac{1}{N} \sum_{i=1}^{N}(y_i \cdot \log(\hat{y}_i) + (1 - y_i) \cdot \log(1 - \hat{y}_i))
```
其中:
- \( N \) 是类别数量,
- \( y_i \) 是原标签向量中的第i个元素(0-1编码,对于softmax输出来说通常是one-hot的),
- \( \hat{y}_i \) 是模型预测的概率向量中的第i个元素。
阅读全文