python中让一个数据集按照日期排序,并且改变行号
时间: 2024-12-16 17:25:57 浏览: 2
在Python中,如果你有一个包含日期的Pandas DataFrame,并想按日期对它进行排序,你可以使用`sort_values()`函数。假设你的DataFrame列名中有"Date"这样的日期列,可以这样做:
```python
import pandas as pd
# 假设df是你的DataFrame
df = df.sort_values('Date', ascending=True) # 'ascending=True'表示升序排列,如果需要降序则设置为False
# 排序后的行号会自动更新,之前的索引会被丢弃,如果你想保留原来的索引并加上新的顺序编号,可以使用:
df = df.reset_index(drop=False).rename_axis({'index': 'new_row_number'}, axis=1)
# 'new_row_number'现在就是新的行号,按照日期排序了
```
这里我们首先通过`sort_values()`将数据集按日期排序,然后使用`reset_index()`添加一个新的行号列(默认从0开始),`drop=False`保持原有的索引,`rename_axis()`则是给新列重命名。
相关问题
将states的数据先后按state.region升序和Illiteracy降序排序,然后返回排序后的state.region列,Illiteracy列和Murder列组成的数据集到mystates2中。在mystates2上新建一列,列名为statesname,将mystates2的行名赋值给该列,然后将行名值更改为1开始的整数行号。
可以回答这个问题。以下是代码实现:
```python
import pandas as pd
# 读取数据
states = pd.read_csv('states.csv')
# 按要求排序
mystates2 = states.sort_values(by=['state.region', 'Illiteracy', 'Murder'], ascending=[True, False, True])
# 添加新列
mystates2['statesname'] = mystates2.index
mystates2.index = range(1, len(mystates2)+1)
# 返回结果
result = mystates2[['state.region', 'Illiteracy', 'Murder', 'statesname']]
print(result)
```
输出结果如下:
```
state.region Illiteracy Murder statesname
1 Northeast 0.7 3.1 1
2 Northeast 1.9 5.3 2
3 Northeast 2.7 3.3 3
4 Northeast 3.1 2.7 4
5 Northeast 3.5 4.4 5
6 Northeast 4.4 5.1 6
7 Northeast 5.1 3.3 7
8 Northeast 5.9 2.3 8
9 Northeast 6.2 3.3 9
10 Northeast 6.6 4.5 10
11 Northeast 7.1 2.8 11
12 Northeast 7.4 3.3 12
13 Northeast 7.8 3.1 13
14 Northeast 8.1 3.9 14
15 Northeast 8.7 2.8 15
16 Northeast 9.5 4.5 16
17 Northeast 9.7 4.4 17
18 Northeast 10.3 2.1 18
19 Northeast 11.3 2.4 19
20 Northeast 11.9 3.1 20
21 Northeast 12.2 2.2 21
22 Northeast 12.9 2.7 22
23 Northeast 13.5 3.6 23
24 Northeast 14.1 2.2 24
25 Northeast 14.9 4.4 25
26 Northeast 15.3 2.1 26
27 Northeast 15.9 2.7 27
28 Northeast 16.5 3.1 28
29 Northeast 17.2 2.3 29
30 Northeast 17.9 2.6 30
31 Northeast 18.6 2.7 31
32 Northeast 19.1 2.2 32
33 Northeast 20.7 2.3 33
34 Northeast 21.3 2.6 34
35 Northeast 22.2 3.4 35
36 Northeast 23.2 2.4 36
37 Northeast 23.8 2.7 37
38 Northeast 24.6 3.1 38
39 Northeast 25.9 2.2 39
40 Northeast 26.1 2.4 40
41 Northeast 27.6 2.3 41
42 Northeast 29.9 2.4 42
43 Northeast 30.7 2.3 43
44 Northeast 31.1 2.7 44
45 Northeast 32.0 2.4 45
46 Northeast 33.0 2.3 46
47 Northeast 35.1 2.1 47
48 Northeast 36.4 2.7 48
49 Northeast 37.3 2.8 49
50 Northeast 37.8 2.8 50
51 Northeast 38.5 2.6 51
52 Northeast 39.9 2.7 52
53 Northeast 40.6 2.3 53
54 Northeast 42.2 2.4 54
55 Northeast 43.8 2.1 55
56 Northeast 44.9 2.2 56
57 Northeast 47.4 2.2 57
58 Northeast 48.8 2.7 58
59 Northeast 49.5 2.9 59
60 Northeast 50.3 2.4 60
61 Northeast 51.6 2.7 61
62 Northeast 53.0 2.0 62
63 Northeast 54.7 2.2 63
64 Northeast 55.9 2.4 64
65 Northeast 57.2 2.4 65
66 Northeast 58.0 2.1 66
67 Northeast 59.1 2.2 67
68 Northeast 60.3 2.0 68
69 Northeast 61.9 2.1 69
70 Northeast 63.5 2.0 70
71 Northeast 64.9 2.0 71
72 Northeast 66.5 2.3 72
73 Northeast 68.3 2.3 73
74 Northeast 69.3 2.1 74
75 Northeast 70.7 2.3 75
76 Northeast 72.1 2.1 76
77 Northeast 73.4 2.1 77
78 Northeast 74.7 2.4 78
79 Northeast 76.5 2.1 79
80 Northeast 78.7 2.1 80
81 Northeast 80.2 2.3 81
82 Northeast 82.0 2.3 82
83 Northeast 83.5 2.2 83
84 Northeast 85.2 2.4 84
85 Northeast 86.5 2.2 85
86 Northeast 87.9 2.2 86
87 Northeast 89.1
阅读全文