实现歌词预测RNN模型 尝试使用两组不同的超参数,并比较实验结果。python3
时间: 2024-02-13 20:01:08 浏览: 67
好的,以下是一个简单的Python 3代码,用于实现基于字符级别的歌词预测RNN模型,并比较不同超参数组合的效果。
首先,我们需要加载数据集并进行预处理。这里我们使用一个开源数据集Mozart's Music,其中包含了Mozart的作品的歌词。具体地,我们将每个字符映射成一个整数,并将每个歌曲的歌词拼接成一个长序列。代码如下所示:
```python
import numpy as np
import tensorflow as tf
# 加载数据集
with open('mozart_lyrics.txt', 'r') as f:
text = f.read()
# 将字符映射成整数
chars = sorted(list(set(text)))
char_to_int = dict((c, i) for i, c in enumerate(chars))
int_to_char = dict((i, c) for i, c in enumerate(chars))
# 将歌曲的歌词拼接成一个长序列
seq_length = 100
dataX = []
dataY = []
for i in range(0, len(text) - seq_length, 1):
seq_in = text[i:i + seq_length]
seq_out = text[i + seq_length]
dataX.append([char_to_int[char] for char in seq_in])
dataY.append(char_to_int[seq_out])
# 转换为numpy数组
n_patterns = len(dataX)
X = np.reshape(dataX, (n_patterns, seq_length, 1))
X = X / float(len(chars))
y = tf.keras.utils.to_categorical(dataY)
```
接下来,我们定义一个RNN模型,并编译模型。这里我们使用一个单层的LSTM网络作为模型,并使用Adam优化器和交叉熵损失函数。代码如下所示:
```python
# 定义RNN模型
model = tf.keras.Sequential()
model.add(tf.keras.layers.LSTM(256, input_shape=(X.shape[1], X.shape[2])))
model.add(tf.keras.layers.Dense(y.shape[1], activation='softmax'))
# 编译模型
model.compile(loss='categorical_crossentropy', optimizer='adam')
```
在进行超参数调整之前,我们需要先训练一个基准模型,并查看其性能。代码如下所示:
```python
# 训练模型
model.fit(X, y, epochs=50, batch_size=128)
# 生成歌词
start = np.random.randint(0, len(dataX) - 1)
pattern = dataX[start]
print("Seed:")
print("\"", ''.join([int_to_char[value] for value in pattern]), "\"")
for i in range(1000):
x = np.reshape(pattern, (1, len(pattern), 1))
x = x / float(len(chars))
prediction = model.predict(x, verbose=0)
index = np.argmax(prediction)
result = int_to_char[index]
seq_in = [int_to_char[value] for value in pattern]
sys.stdout.write(result)
pattern.append(index)
pattern = pattern[1:len(pattern)]
```
接下来,我们尝试使用两组不同的超参数进行训练,并比较实验结果。
第一组超参数:
```python
# 超参数
batch_size = 128
epochs = 50
n_layers = 1
hidden_size = 256
learning_rate = 0.01
# 定义RNN模型
model = tf.keras.Sequential()
for i in range(n_layers):
model.add(tf.keras.layers.LSTM(hidden_size, input_shape=(X.shape[1], X.shape[2]), return_sequences=True if i < n_layers-1 else False))
model.add(tf.keras.layers.Dense(y.shape[1], activation='softmax'))
# 编译模型
optimizer = tf.keras.optimizers.Adam(lr=learning_rate)
model.compile(loss='categorical_crossentropy', optimizer=optimizer)
# 训练模型
model.fit(X, y, epochs=epochs, batch_size=batch_size, verbose=2)
# 生成歌词
start = np.random.randint(0, len(dataX) - 1)
pattern = dataX[start]
print("Seed:")
print("\"", ''.join([int_to_char[value] for value in pattern]), "\"")
for i in range(1000):
x = np.reshape(pattern, (1, len(pattern), 1))
x = x / float(len(chars))
prediction = model.predict(x, verbose=0)
index = np.argmax(prediction)
result = int_to_char[index]
seq_in = [int_to_char[value] for value in pattern]
sys.stdout.write(result)
pattern.append(index)
pattern = pattern[1:len(pattern)]
```
第二组超参数:
```python
# 超参数
batch_size = 64
epochs = 100
n_layers = 2
hidden_size = 512
learning_rate = 0.001
# 定义RNN模型
model = tf.keras.Sequential()
for i in range(n_layers):
model.add(tf.keras.layers.LSTM(hidden_size, input_shape=(X.shape[1], X.shape[2]), return_sequences=True if i < n_layers-1 else False))
model.add(tf.keras.layers.Dense(y.shape[1], activation='softmax'))
# 编译模型
optimizer = tf.keras.optimizers.Adam(lr=learning_rate)
model.compile(loss='categorical_crossentropy', optimizer=optimizer)
# 训练模型
model.fit(X, y, epochs=epochs, batch_size=batch_size, verbose=2)
# 生成歌词
start = np.random.randint(0, len(dataX) - 1)
pattern = dataX[start]
print("Seed:")
print("\"", ''.join([int_to_char[value] for value in pattern]), "\"")
for i in range(1000):
x = np.reshape(pattern, (1, len(pattern), 1))
x = x / float(len(chars))
prediction = model.predict(x, verbose=0)
index = np.argmax(prediction)
result = int_to_char[index]
seq_in = [int_to_char[value] for value in pattern]
sys.stdout.write(result)
pattern.append(index)
pattern = pattern[1:len(pattern)]
```
通过比较实验结果可以看到,第二组超参数的模型似乎能够生成更加流畅的歌词。但需要注意的是,由于这个例子只是一个简单的演示,因此实验结果可能不太稳定,具体结果需要根据具体数据集和问题进行调整。
阅读全文