format_string % tuple_of_values
时间: 2024-10-14 07:18:22 浏览: 28
`format_string % tuple_of_values` 是Python中的一种旧式字符串格式化方法,它的工作原理是在字符串 `format_string` 中指定位置的地方插入变量的值。`%` 后面跟的是一个格式指示符列表,每个指示符对应 `tuple_of_values` 中的一个元素,按顺序匹配。
例如:
```python
name = "Alice"
age = 25
format_str = "My name is {} and I am {} years old.".format(name, age)
print(format_str)
# 输出: My name is Alice and I am 25 years old.
```
这里的 `{}` 就是一个占位符,当调用 `format()` 函数并传入 `(name, age)` 作为参数时,会替换掉占位符的位置,得到最终的字符串。
不过,在Python 3.6及以后版本中,推荐使用更简洁易读的 f-string(formatted string literals),例如:
```python
name = "Bob"
age = 30
print(f"My name is {name} and I am {age} years old.")
# 输出: My name is Bob and I am 30 years old.
```
这两种方法虽然有差异,但在大多数情况下都能达到同样的效果。
相关问题
formatException(exc_info)
`formatException(exc_info)` is a method in the `traceback` module of Python, which takes in a tuple of three values returned by `sys.exc_info()` (which contains information about the most recent exception that occurred) and returns a formatted string of the traceback information.
The formatted string includes the traceback information (the call stack) leading up to the exception, including the filename, line number, and function name where the exception occurred. This can be useful for debugging and understanding the cause of the exception.
Here's an example usage:
```python
import traceback
import sys
try:
# some code that may raise an exception
except Exception:
exc_type, exc_value, exc_traceback = sys.exc_info()
traceback_string = ''.join(traceback.format_exception(exc_type, exc_value, exc_traceback))
print(traceback_string)
```
This will print out the traceback information for the most recent exception that occurred in the `try` block.
flink写入 mysql_flink sql实时计算当天pv写入mysql
要将Flink实时计算的结果写入MySQL数据库中,可以使用Flink的JDBC连接器。以下是一个将当天PV写入MySQL的示例代码:
```java
// 定义MySQL连接信息
final String jdbcUrl = "jdbc:mysql://localhost:3306/test";
final String username = "root";
final String password = "root";
// 定义Flink数据流环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
// 读取数据流
DataStream<String> input = env.socketTextStream("localhost", 9999);
// 对数据流进行处理,计算当天PV
DataStream<Tuple2<String, Integer>> result = input
.map(new MapFunction<String, Tuple2<String, Integer>>() {
@Override
public Tuple2<String, Integer> map(String value) throws Exception {
// 解析日志数据,获取访问时间和页面URL
String[] fields = value.split(",");
String time = fields[0];
String url = fields[1];
// 计算当天日期
SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd");
String today = sdf.format(new Date());
// 判断日志时间是否在当天,如果是则返回页面URL和1,否则返回空
if (time.contains(today)) {
return new Tuple2<>(url, 1);
} else {
return null;
}
}
})
.filter(Objects::nonNull)
.keyBy(0)
.sum(1);
// 将结果写入MySQL
result.addSink(JdbcSink.sink(
"insert into pv(url, pv, date) values (?, ?, ?)",
new JdbcStatementBuilder<Tuple2<String, Integer>>() {
@Override
public void accept(PreparedStatement preparedStatement, Tuple2<String, Integer> t) throws SQLException {
// 设置SQL参数
preparedStatement.setString(1, t.f0);
preparedStatement.setInt(2, t.f1);
preparedStatement.setDate(3, new Date(System.currentTimeMillis()));
}
},
new JdbcConnectionOptions.JdbcConnectionOptionsBuilder()
.withUrl(jdbcUrl)
.withUsername(username)
.withPassword(password)
.build()));
// 启动数据流处理
env.execute();
```
该代码首先定义了MySQL的连接信息,然后创建了一个数据流环境,并从Socket读取数据流进行处理。处理过程中,首先解析日志数据,判断是否在当天,并计算PV。最后,使用JdbcSink将结果写入MySQL数据库中。
需要注意的是,JdbcSink需要引入以下依赖:
```xml
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-connector-jdbc_2.11</artifactId>
<version>1.12.2</version>
</dependency>
```
阅读全文