用flink datastream 写一个程序,分析一个mysql表 写入另一个MySQL表
时间: 2023-12-14 16:40:20 浏览: 142
好的,以下是一个使用 Flink DataStream API 分析 MySQL 表并将结果写入另一个 MySQL 表的示例程序:
```java
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.api.java.tuple.Tuple;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.sink.SinkFunction;
import org.apache.flink.streaming.connectors.jdbc.JdbcConnectionOptions;
import org.apache.flink.streaming.connectors.jdbc.JdbcSink;
import org.apache.flink.streaming.connectors.jdbc.JdbcStatementBuilder;
import org.apache.flink.streaming.connectors.jdbc.JdbcTableSink;
import org.apache.flink.streaming.connectors.jdbc.JdbcWriter;
import org.apache.flink.streaming.connectors.jdbc.JdbcWriterBuilder;
import org.apache.flink.streaming.connectors.jdbc.JdbcUpsertTableSink;
import org.apache.flink.streaming.connectors.jdbc.JdbcUpsertTableSinkBuilder;
import org.apache.flink.streaming.connectors.jdbc.JdbcUtils;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.table.descriptors.ConnectorDescriptor;
import org.apache.flink.table.descriptors.Jdbc;
import org.apache.flink.table.descriptors.Schema;
import org.apache.flink.types.Row;
import java.sql.PreparedStatement;
import java.sql.SQLException;
public class MySQLTableAnalysis {
public static void main(String[] args) throws Exception {
// 设置执行环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env);
// 定义 MySQL 连接信息
String url = "jdbc:mysql://localhost:3306/test";
String username = "root";
String password = "root";
// 定义输入表的连接器描述符
Jdbc jdbc = new Jdbc()
.url(url)
.username(username)
.password(password)
.table("input_table")
.lookupOptions(JdbcOptions.builder()
.setFetchSize(1000)
.build());
// 定义输出表的连接器描述符
Jdbc outputJdbc = new Jdbc()
.url(url)
.username(username)
.password(password)
.table("output_table");
// 注册输入表
tableEnv
.connect(jdbc)
.withFormat(new Csv())
.withSchema(new Schema()
.field("id", DataTypes.INT())
.field("name", DataTypes.STRING())
.field("age", DataTypes.INT()))
.createTemporaryTable("input_table");
// 读取输入表并进行分析
Table inputTable = tableEnv.from("input_table");
Table resultTable = inputTable
.groupBy("name")
.select("name, count(id) as cnt");
// 将结果转换为 DataStream<Tuple2<String, Integer>>
DataStream<Tuple2<String, Integer>> resultStream = tableEnv.toRetractStream(resultTable, Row.class)
.map(new MapFunction<Tuple2<Boolean, Row>, Tuple2<String, Integer>>() {
@Override
public Tuple2<String, Integer> map(Tuple2<Boolean, Row> value) throws Exception {
String name = value.f1.getField(0).toString();
Integer cnt = Integer.parseInt(value.f1.getField(1).toString());
return Tuple2.of(name, cnt);
}
});
// 定义 KeySelector 和 SinkFunction
KeySelector<Tuple2<String, Integer>, String> keySelector = new KeySelector<Tuple2<String, Integer>, String>() {
@Override
public String getKey(Tuple2<String, Integer> value) throws Exception {
return value.f0;
}
};
SinkFunction<Tuple2<String, Integer>> sinkFunction = new SinkFunction<Tuple2<String, Integer>>() {
@Override
public void invoke(Tuple2<String, Integer> value, Context context) throws Exception {
String sql = "INSERT INTO output_table (name, cnt) VALUES (?, ?) ON DUPLICATE KEY UPDATE cnt = ?";
JdbcUtils.write(
value,
PreparedStatement::setString,
PreparedStatement::setInt,
new int[]{3},
sql,
JdbcConnectionOptions.builder()
.withUrl(url)
.withUsername(username)
.withPassword(password)
.build());
}
};
// 将结果写入输出表
JdbcUpsertTableSink<Tuple2<String, Integer>> jdbcSink = JdbcUpsertTableSink.builder()
.setOptions(outputJdbc)
.setFlushIntervalMills(5000)
.setKeyFields(new String[]{"name"})
.build();
resultStream
.addSink(jdbcSink)
.name("MySQL Upsert Sink");
// 执行程序
env.execute("MySQL Table Analysis");
}
}
```
在这个示例程序中,我们首先定义了输入表和输出表的连接信息,并使用 Flink Table API 定义了输入表的结构。然后,我们使用 Flink Table API 计算了输入表的分析结果,并将结果转换为 DataStream。最后,我们使用 Flink JDBC Upsert Table Sink 将结果写入输出表。
请注意,这个示例程序假设输入表和输出表都已经在 MySQL 中存在,并且输出表具有一个名为“name”的唯一索引。如果您需要创建表,请使用 SQL DDL 语句或其他适当的工具创建表。
阅读全文