编程实现线性回归模型,预测研究生入学率,使用Addmisson_Predic.csv数据集
时间: 2024-11-27 14:12:58 浏览: 12
编程实现线性回归模型预测研究生入学率通常涉及以下几个步骤,这里我们以Python语言和Pandas库处理CSV数据,然后使用scikit-learn库来构建模型:
1. **加载数据**:
```python
import pandas as pd
data = pd.read_csv('Addmisson_Predic.csv')
X = data.drop('Admission', axis=1) # 假设'Admission'列是目标变量
y = data['Admission']
```
2. **数据预处理**:
- 检查缺失值并处理(如填充、删除)
- 特征缩放(如果需要)
3. **拆分数据集**:
```python
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```
4. **创建线性回归模型**:
```python
from sklearn.linear_model import LinearRegression
model = LinearRegression()
```
5. **训练模型**:
```python
model.fit(X_train, y_train)
```
6. **评估模型**:
```python
from sklearn.metrics import mean_squared_error, r2_score
y_pred = model.predict(X_test)
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)
print(f"Mean Squared Error (MSE): {mse}")
print(f"R-squared Score: {r2}")
```
7. **保存模型**(如果需要长期使用):
```python
import joblib
joblib.dump(model, 'linear_regression_model.pkl')
```
8. **预测新数据**:
```python
new_data = ... # 新的数据实例
predicted_admission_rate = model.predict(new_data)
```
阅读全文