帮我写一段无需使用相关库的带输出的NTRU数字签名的C语言代码
时间: 2024-06-10 07:04:26 浏览: 92
NTRU算法加密及签名的实现
5星 · 资源好评率100%
好的,以下是一段使用NTRU数字签名的C语言代码,不需要使用相关库。
```c
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <math.h>
#define N 509 // NTRU的参数
#define Q 2048
#define B 120
#define ITER 100 // NTRU签名的迭代次数
int Mod(int a, int b) {
int ret = a % b;
if (ret < 0)
return ret + b;
else
return ret;
}
int gcd(int a, int b) {
if (b == 0)
return a;
return gcd(b, a % b);
}
int InvMod(int a, int b) {
int b0 = b, t, q;
int x0 = 0, x1 = 1;
if (b == 1)
return 1;
while (a > 1) {
q = a / b;
t = b, b = a % b, a = t;
t = x0, x0 = x1 - q * x0, x1 = t;
}
if (x1 < 0)
x1 += b0;
return x1;
}
int ModExp(int a, int b, int m) {
int r = 1;
while (b) {
if (b & 1)
r = (r * a) % m;
a = (a * a) % m;
b >>= 1;
}
return r;
}
int Rng(int bound) {
return rand() % bound;
}
void ByteSwap(char* data, int len) {
for (int i = 0; i < len / 2; i++) {
char temp = data[i];
data[i] = data[len - i - 1];
data[len - i - 1] = temp;
}
}
void Round(int* f, int q) {
for (int i = 0; i < N; i++) {
if (f[i] > q / 2)
f[i] -= q;
if (f[i] < -q / 2)
f[i] += q;
}
}
void Encrypt(int* ct, int* pt, int* key, int q) {
int r[N], e[N];
for (int i = 0; i < N; i++) {
r[i] = Rng(2) - 1;
e[i] = Rng(q / B) * B;
}
int b[N];
for (int i = 0; i < N; i++) {
b[i] = 0;
for (int j = 0; j < N; j++)
b[i] += key[i * N + j] * r[j];
b[i] = Mod(b[i], q);
}
for (int i = 0; i < N; i++)
ct[i] = Mod(pt[i] + b[i] + e[i], q);
}
int Verify(int* ct, int* sig, int* key, int q) {
int pt[N], pt1[N];
memset(pt1, 0, sizeof(pt1));
Encrypt(pt, sig, key, q);
int sum = 0;
for (int i = 0; i < N; i++) {
pt1[i] = Mod(ct[i] - pt[i], q);
if (pt1[i] < -q / 4 || pt1[i] > q / 4)
return 0;
sum += abs(pt1[i]);
}
return (sum < B);
}
void Sign(int* sig, int* pt, int* key, int q) {
int s[N], e[N], f[N], g[N];
for (int i = 0; i < N; i++) {
s[i] = Rng(2) - 1;
e[i] = Rng(q / B) * B;
}
int a[N * N];
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
if (i == j)
a[i * N + j] = q;
else
a[i * N + j] = 0;
}
}
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
a[i * N + j] += key[i * N + j];
}
}
int x[N], y[N], z[N];
for (int k = 0; k < N; k++) {
x[k] = 0;
for (int i = 0; i < N; i++)
x[k] += a[k * N + i] * pt[i];
x[k] = Mod(x[k], q);
y[k] = 0;
for (int i = 0; i < N; i++)
y[k] += a[k * N + i] * s[i];
y[k] = Mod(y[k], q);
z[k] = Mod(x[k] - y[k] + e[k], q);
}
memcpy(f, sig, N * sizeof(int));
for (int i = 0; i < ITER; i++) {
for (int k = 0; k < N; k++) {
g[k] = 0;
for (int j = 0; j < N; j++) {
g[k] += key[k * N + j] * f[j];
}
g[k] = Mod(g[k], q);
}
for (int k = 0; k < N; k++) {
f[k] = Mod(f[k] - Mod(z[k] - g[k], q), q);
}
Round(f, q);
}
memcpy(sig, f, N * sizeof(int));
}
int main() {
srand(time(NULL));
int p = 3, q = 2048, d = 1, N = 509;
int pt[N], sig[N], ct[N], key[N * N];
memset(key, 0, sizeof(key));
for (int i = 0; i < N; i++) {
pt[i] = Rng(2) - 1;
}
int p1 = p + 1, invd = InvMod(d, q);
while (1) {
do {
for (int i = 0; i < N; i++) {
key[i * N + i] = Rng(2) - 1;
for (int j = i + 1; j < N; j++) {
key[i * N + j] = Rng(p1) * invd;
key[j * N + i] = -key[i * N + j];
}
}
} while (gcd(key[0], q) != 1);
int flag = 1;
for (int i = 0; i < ITER; i++) {
Sign(sig, pt, key, q);
if (!Verify(ct, sig, key, q)) {
flag = 0;
break;
}
}
if (flag)
break;
}
printf("pt: ");
for (int i = 0; i < N; i++)
printf("%d ", pt[i]);
printf("\n");
printf("sig: ");
for (int i = 0; i < N; i++)
printf("%d ", sig[i]);
printf("\n");
printf("ct: ");
for (int i = 0; i < N; i++)
printf("%d ", ct[i]);
printf("\n");
return 0;
}
```
该程序使用NTRU数字签名算法实现,在签名时先生成一个随机密钥,然后进行迭代计算得到签名,再使用该密钥对签名进行验证。程序中的参数已经设定为常用的NTRU参数,如果需要更改参数可以根据实际需求进行修改。
阅读全文