卫星回归周期的定义及各GNSS系统卫星的回归周期

时间: 2024-04-01 19:31:02 浏览: 28
卫星回归周期指的是一个卫星从一次飞越到地球表面的起点,到下一次飞越到同一点的时间间隔。对于各个GNSS系统的卫星,具体的回归周期如下: 1. GPS系统的卫星回归周期为大约12小时。 2. GLONASS系统的卫星回归周期为大约11小时。 3. Galileo系统的卫星回归周期为大约14小时。 4. BeiDou系统的卫星回归周期为大约12小时。 需要注意的是,这些回归周期是理论值,实际上受到多种因素的影响,如卫星的轨道高度、地球引力、大气阻力等。因此,实际回归周期可能会略有偏差。
相关问题

GNSS卫星轨道参数

GNSS(全球导航卫星系统)卫星的轨道参数包括以下几个要素: 1. 卫星轨道类型:GNSS卫星的轨道可以是地球同步轨道(如GPS中的中纬地球同步轨道)、近地点高度轨道(如GPS中的中圆轨道)或近地点低高度轨道(如GLONASS中的倾斜轨道)等。 2. 半长轴(Semi-major Axis):半长轴是描述椭圆轨道形状的一个参数,它表示轨道椭圆的长轴长度的一半。它决定了卫星轨道的大小。 3. 偏心率(Eccentricity):偏心率描述了轨道椭圆的离心程度,是一个介于0和1之间的值。偏心率为0表示轨道是一个圆形,为1表示轨道是一个抛物线。 4. 倾角(Inclination):倾角是指卫星轨道平面与地球赤道面之间的夹角。它决定了卫星在赤道上空的运行情况。 5. 升交点赤经(Right Ascension of Ascending Node,RAAN):升交点赤经是指卫星轨道与地球赤道面相交的点在赤道上的经度。它决定了卫星轨道平面的方向。 6. 平近点角(Argument of Perigee):平近点角是指卫星轨道椭圆的近地点与升交点之间的角度。它决定了卫星在近地点附近的运行情况。 这些轨道参数共同决定了GNSS卫星在空间中的位置和运动状态,从而实现导航和定位功能。不同的GNSS系统可能会有略微不同的轨道参数设置。

卫星导航定位中GNSS是什么

GNSS是全球导航卫星系统(Global Navigation Satellite System)的缩写。它是一种利用卫星发射的导航信号来确定位置、速度和时间等信息的技术。目前,全球主要的GNSS系统有美国的GPS(全球定位系统)、俄罗斯的GLONASS(格洛纳斯)、欧洲的Galileo(伽利略)和中国的BeiDou(北斗)。利用GNSS技术,人们可以在全球任何地方精准地定位自己的位置,因此在航空、航海、交通运输、科研等领域有着广泛的应用。

相关推荐

最新推荐

recommend-type

新一代GNSS信号处理及评估技术-卢虎、廉保旺著-BOC.pdf

《新一代GNSS信号处理及评估技术》一书,由卢虎和廉保旺合著,主要探讨了全球导航卫星系统(GNSS)中的一种新型调制技术——BOC(Binary Offset Carrier)调制。BOC调制是现代GNSS信号设计的关键技术,尤其在应对...
recommend-type

Quectel_LTE_Standard_GNSS_应用指导_V1.0.pdf

一个移远EC2X模组GNSS中文翻译AT资料,提供给像我一样看英文资料吃力的物联网嵌入式工程师。中英对照文翻译
recommend-type

code shift keying prospects for improving GNSS signal designs.pdf

Code Shift Keying(CSK)是一种编码技术,主要应用于全球导航卫星系统(GNSS)的信号设计中。CSK技术可以提高GNSS信号的精度和可用性,从而满足更多的added-value应用和服务。 CSK技术的原理是通过对码片的偏移来...
recommend-type

u-blox8-M8_ReceiverDescrProtSpec_(UBX-13003221).pdf

来自官网的数据手册,因官网有时无法下载,特意做个备份。 简介如下: 接收机描述(包括协议规范)描述了u-blox 8/u-blox M8高性能定位模块的固件...包括标准精度GNSS、时间同步、时频同步、高精度GNSS、ADR和UDR产品。
recommend-type

CASIC多模卫星导航接收机协议规范.pdf

NMEA消息中的发送器标识符用于区分不同的卫星导航模式,例如'BDS'代表北斗导航卫星系统,'GP'代表全球定位系统(包括SBAS和QZSS),'GL'代表GLONASS,'GN'代表全球导航卫星系统(GNSS),而'P'则用于自定义信息。...
recommend-type

基于嵌入式ARMLinux的播放器的设计与实现 word格式.doc

本文主要探讨了基于嵌入式ARM-Linux的播放器的设计与实现。在当前PC时代,随着嵌入式技术的快速发展,对高效、便携的多媒体设备的需求日益增长。作者首先深入剖析了ARM体系结构,特别是针对ARM9微处理器的特性,探讨了如何构建适用于嵌入式系统的嵌入式Linux操作系统。这个过程包括设置交叉编译环境,优化引导装载程序,成功移植了嵌入式Linux内核,并创建了适合S3C2410开发板的根文件系统。 在考虑到嵌入式系统硬件资源有限的特点,通常的PC机图形用户界面(GUI)无法直接应用。因此,作者选择了轻量级的Minigui作为研究对象,对其实体架构进行了研究,并将其移植到S3C2410开发板上,实现了嵌入式图形用户界面,使得系统具有简洁而易用的操作界面,提升了用户体验。 文章的核心部分是将通用媒体播放器Mplayer移植到S3C2410开发板上。针对嵌入式环境中的音频输出问题,作者针对性地解决了Mplayer播放音频时可能出现的不稳定性,实现了音乐和视频的无缝播放,打造了一个完整的嵌入式多媒体播放解决方案。 论文最后部分对整个项目进行了总结,强调了在嵌入式ARM-Linux平台上设计播放器所取得的成果,同时也指出了一些待改进和完善的方面,如系统性能优化、兼容性提升以及可能的扩展功能等。关键词包括嵌入式ARM-Linux、S3C2410芯片、Mplayer多媒体播放器、图形用户界面(GUI)以及Minigui等,这些都反映出本文研究的重点和领域。 通过这篇论文,读者不仅能了解到嵌入式系统与Linux平台结合的具体实践,还能学到如何在资源受限的环境中设计和优化多媒体播放器,为嵌入式技术在多媒体应用领域的进一步发展提供了有价值的经验和参考。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Python字符串为空判断的动手实践:通过示例掌握技巧

![Python字符串为空判断的动手实践:通过示例掌握技巧](https://img-blog.csdnimg.cn/72f88d4fc1164d6c8b9c29d8ab5ed75c.png?x-oss-process=image/watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBASGFyYm9yIExhdQ==,size_20,color_FFFFFF,t_70,g_se,x_16) # 1. Python字符串为空判断的基础理论 字符串为空判断是Python编程中一项基本且重要的任务。它涉及检查字符串是否为空(不包含任何字符),这在
recommend-type

box-sizing: border-box;作用是?

`box-sizing: border-box;` 是 CSS 中的一个样式属性,它改变了元素的盒模型行为。默认情况下,浏览器会计算元素内容区域(content)、内边距(padding)和边框(border)的总尺寸,也就是所谓的"标准盒模型"。而当设置为 `box-sizing: border-box;` 后,元素的总宽度和高度会包括内容、内边距和边框的总空间,这样就使得开发者更容易控制元素的实际布局大小。 具体来说,这意味着: 1. 内容区域的宽度和高度不会因为添加内边距或边框而自动扩展。 2. 边框和内边距会从元素的总尺寸中减去,而不是从内容区域开始计算。
recommend-type

经典:大学答辩通过_基于ARM微处理器的嵌入式指纹识别系统设计.pdf

本文主要探讨的是"经典:大学答辩通过_基于ARM微处理器的嵌入式指纹识别系统设计.pdf",该研究专注于嵌入式指纹识别技术在实际应用中的设计和实现。嵌入式指纹识别系统因其独特的优势——无需外部设备支持,便能独立完成指纹识别任务,正逐渐成为现代安全领域的重要组成部分。 在技术背景部分,文章指出指纹的独特性(图案、断点和交叉点的独一无二性)使其在生物特征认证中具有很高的可靠性。指纹识别技术发展迅速,不仅应用于小型设备如手机或门禁系统,也扩展到大型数据库系统,如连接个人电脑的桌面应用。然而,桌面应用受限于必须连接到计算机的条件,嵌入式系统的出现则提供了更为灵活和便捷的解决方案。 为了实现嵌入式指纹识别,研究者首先构建了一个专门的开发平台。硬件方面,详细讨论了电源电路、复位电路以及JTAG调试接口电路的设计和实现,这些都是确保系统稳定运行的基础。在软件层面,重点研究了如何在ARM芯片上移植嵌入式操作系统uC/OS-II,这是一种实时操作系统,能够有效地处理指纹识别系统的实时任务。此外,还涉及到了嵌入式TCP/IP协议栈的开发,这是实现系统间通信的关键,使得系统能够将采集的指纹数据传输到远程服务器进行比对。 关键词包括:指纹识别、嵌入式系统、实时操作系统uC/OS-II、TCP/IP协议栈。这些关键词表明了论文的核心内容和研究焦点,即围绕着如何在嵌入式环境中高效、准确地实现指纹识别功能,以及与外部网络的无缝连接。 这篇论文不仅深入解析了嵌入式指纹识别系统的硬件架构和软件策略,而且还展示了如何通过结合嵌入式技术和先进操作系统来提升系统的性能和安全性,为未来嵌入式指纹识别技术的实际应用提供了有价值的研究成果。