function sol_kf(filename) global glc; %read solution file solution=readGINavsol(filename); n=size(solution,1); %initialize 对状态进行初始化 x = zeros(6,1);%state vector 状态向量 xP = zeros(6,6);%covariance of x 协方差 %过程噪声密度 sqrt_accPSD_hor=15;%m/s^2/sqrt(Hz) sqrt_accPSD_up=0.1;%m/s^2/sqrt(Hz) accPSD_enu =zeros(3,3); accPSD_enu(1,1)=(sqrt_accPSD_hor)^2; accPSD_enu(2,2)=(sqrt_accPSD_hor)^2; accPSD_enu(3,3)=sqrt_accPSD_up^2; bInitialized=0; time_x = solution(1).time; %all epochs for i=1:n %load data of new epoch sol = solution(i); %转换矩阵 Cne=xyz2enu(sol.pos); %转换至地球坐标系下 accPSD=Cne'*accPSD_enu*Cne; vel=sol.vel'; pos=sol.pos'; %临时变量进行存储 posP=[sol.posP(1) sol.posP(4) sol.posP(6); sol.posP(4) sol.posP(2) sol.posP(5); sol.posP(6) sol.posP(5) sol.posP(3)]; velP=[sol.velP(1) sol.velP(4) sol.velP(6); sol.velP(4) sol.velP(2) sol.velP(5); sol.velP(6) sol.velP(5) sol.velP(3)]; dt = timediff(sol.time,time_x); %如果时间差很大,说明时间中断很久,则需要重新进行初始化 if dt>15 bInitialized=0; end %initialize if ~bInitialized x = [pos; vel]; xP=zeros(6,6); xP(1:3,1:3)= eye(3)*1e16; xP(4:6,4:6)= eye(3)*100; if sol.posP(1)>0 xP(1:3,1:3)= posP; end if sol.velP(1)>0 xP(4:6,4:6)= velP; end time_x = sol.time; bInitialized=1; continue; end %%%%%%%%%%%%%%%to do%%%%%%%%%%%%%%%%%%%%%%%%% %step 1: prediction %Phi %Q 补全该代码

时间: 2024-04-26 18:26:29 浏览: 7
%step 1: prediction %Phi dt = timediff(sol.time,time_x); %计算两个历元的时间差 F=zeros(6,6); F(1:3,4:6)=eye(3)*dt; Phi = [eye(3) eye(3)*dt; zeros(3,3) eye(3)]; %Q Q=zeros(6,6); Q(1:3,1:3)=eye(3)*0.25*dt^4*accPSD(1,1)+eye(3)*0.5*dt^3*accPSD(1,1); %水平方向 Q(1:3,4:6)=eye(3)*0.5*dt^2*accPSD(1,1); %水平方向 Q(4:6,1:3)=eye(3)*0.5*dt^2*accPSD(1,1); %水平方向 Q(4:6,4:6)=eye(3)*dt^2*accPSD(3,3); %垂直方向 %预测状态和协方差 x = Phi * x; xP = Phi * xP * Phi' + Q; %step 2: measurement update if sol.posP(1)>0 %如果有位置信息 H = [eye(3) zeros(3,3)]; %测量矩阵 R=zeros(3,3); R(1:2,1:2)=eye(2)*sol.posP(1)^2; %水平误差 R(3,3)=sol.posP(7)^2; %垂直误差 %计算卡尔曼增益 K = xP * H' * inv(H * xP * H' + R); %测量更新状态和协方差 z = sol.pos'; dz = z - H * x; dz(3) = rem(dz(3)+pi,2*pi)-pi; %处理航向角差异 x = x + K * dz; xP = (eye(6) - K * H) * xP; end %更新历元时间 time_x = sol.time;

相关推荐

最新推荐

recommend-type

智慧物流医药物流落地解决方案qytp.pptx

智慧物流医药物流落地解决方案qytp.pptx
recommend-type

JAVA物业管理系统设计与实现.zip

JAVA物业管理系统设计与实现
recommend-type

基于java的聊天系统的设计于实现.zip

基于java的聊天系统的设计于实现
recommend-type

Vue数字孪生可视化建模系统源码.zip

vueVue数字孪生可视化建模系统源码.zip vueVue数字孪生可视化建模系统源码.zipvueVue数字孪生可视化建模系统源码.zipvueVue数字孪生可视化建模系统源码.zipvueVue数字孪生可视化建模系统源码.zipvueVue数字孪生可视化建模系统源码.zipvueVue数字孪生可视化建模系统源码.zipvueVue数字孪生可视化建模系统源码.zipvueVue数字孪生可视化建模系统源码.zipvueVue数字孪生可视化建模系统源码.zipvueVue数字孪生可视化建模系统源码.zipvueVue数字孪生可视化建模系统源码.zipvueVue数字孪生可视化建模系统源码.zip
recommend-type

基于UCI Heart Disease数据集的心脏病分析python源码+数据集+演示ppt+详细资料.zip

基于UCI Heart Disease数据集的心脏病分析python源码+数据集+演示ppt+详细资料.zip基于UCI Heart Disease数据集的心脏病分析python源码+数据集+演示ppt+详细资料.zip基于UCI Heart Disease数据集的心脏病分析python源码+数据集+演示ppt+详细资料.zip基于UCI Heart Disease数据集的心脏病分析python源码+数据集+演示ppt+详细资料.zip基于UCI Heart Disease数据集的心脏病分析python源码+数据集+演示ppt+详细资料.zip基于UCI Heart Disease数据集的心脏病分析python源码+数据集+演示ppt+详细资料.zip基于UCI Heart Disease数据集的心脏病分析python源码+数据集+演示ppt+详细资料.zip基于UCI Heart Disease数据集的心脏病分析python源码+数据集+演示ppt+详细资料.zip
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解释minorization-maximization (MM) algorithm,并给出matlab代码编写的例子

Minorization-maximization (MM) algorithm是一种常用的优化算法,用于求解非凸问题或含有约束的优化问题。该算法的基本思想是通过构造一个凸下界函数来逼近原问题,然后通过求解凸下界函数的最优解来逼近原问题的最优解。具体步骤如下: 1. 初始化参数 $\theta_0$,设 $k=0$; 2. 构造一个凸下界函数 $Q(\theta|\theta_k)$,使其满足 $Q(\theta_k|\theta_k)=f(\theta_k)$; 3. 求解 $Q(\theta|\theta_k)$ 的最优值 $\theta_{k+1}=\arg\min_\theta Q(
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。