make menuconifg中的[ ] JBD2 (ext4) debugging support 介 绍

时间: 2024-05-23 09:12:55 浏览: 16
JBD2是Linux内核中的一个模块,它是ext4文件系统的一部分。JBD2负责在文件系统和硬件之间提供一个抽象层,确保文件系统的数据一致性和可靠性。JBD2 (ext4) debugging support是一个用于调试JBD2的选项,它可以开启一些额外的调试信息,以便于开发人员在调试JBD2时更容易地定位问题。如果您不是开发人员,就没有必要开启这个选项。
相关问题

示范Linux内核的ext4文件系统并对其代码逐行注释介绍

Linux内核的ext4文件系统是一种高性能、可靠性高的文件系统,其代码在内核源码树的/fs/ext4目录下。 代码文件主要包括以下几个部分: 1. ext4.h:定义了ext4文件系统的数据结构和相关常量。 2. super.c:实现了ext4文件系统超级块的读取和写入。 3. inode.c:实现了ext4文件系统inode节点的读取和写入。 4. namei.c:实现了ext4文件系统文件名的查找和创建。 5. dir.c:实现了ext4文件系统目录的读写操作。 6. file.c:实现了ext4文件系统文件的读写操作。 7. extents.c:实现了ext4文件系统的extents分配和管理。 8. inode_table.c:实现了ext4文件系统inode表的管理。 9. resize.c:实现了ext4文件系统的动态扩容和缩容。 10. journal.c:实现了ext4文件系统的日志功能。 下面以super.c文件为例,对其代码进行逐行注释介绍。 ```c /* * linux/fs/ext4/super.c * * Copyright (C) 1995-2006 Theodore Ts'o. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. */ ``` 代码开头是版权和许可证声明。 ```c #include <linux/module.h> #include <linux/fs.h> #include <linux/seq_file.h> #include <linux/parser.h> #include <linux/random.h> #include <linux/string.h> #include <linux/slab.h> #include <linux/time.h> #include <linux/uaccess.h> #include <linux/crc32c.h> #include <linux/buffer_head.h> #include <linux/init.h> #include <linux/magic.h> #include <linux/blkdev.h> #include <linux/backing-dev.h> #include <linux/kdev_t.h> #include <linux/sched.h> #include <linux/quotaops.h> #include <linux/pagemap.h> #include <linux/compat.h> #include <linux/falloc.h> #include <linux/atomic.h> #include <linux/fiemap.h> #include <linux/fscrypt.h> #include "ext4.h" #include "xattr.h" #include "acl.h" #include "ext4_jbd2.h" #include "mballoc.h" #include "extents.h" #include "ext4_extents.h" #include "ext4_inode.h" #include "ext4_raw.h" #include "htree.h" ``` 接下来是一些头文件的引用,包括了一些常用的内核函数和结构体定义。 ```c static void ext4_put_super(struct super_block *sb); static int ext4_sync_fs(struct super_block *sb, int wait); static int ext4_freeze(struct super_block *sb); static int ext4_unfreeze(struct super_block *sb); static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); static int ext4_remount(struct super_block *sb, int *flags, char *data); static int ext4_show_options(struct seq_file *seq, struct dentry *root); static int ext4_commit_super(struct super_block *sb, int sync); static int ext4_write_super(struct super_block *sb); ``` 这部分是函数的声明。 ```c static int ext4_fill_super(struct super_block *sb, void *data, int silent); ``` 这是ext4文件系统的核心函数,用于读取超级块和初始化文件系统。 ```c static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, const char *dev_name, void *data); ``` 这是文件系统挂载函数,用于将ext4文件系统挂载到指定设备上。 ```c static struct file_system_type ext4_fs_type = { .owner = THIS_MODULE, .name = "ext4", .mount = ext4_mount, .kill_sb = kill_block_super, .fs_flags = FS_REQUIRES_DEV, }; MODULE_ALIAS_FS("ext4"); MODULE_ALIAS("fs-ext4"); ``` 这部分定义了一个file_system_type结构体,用于注册ext4文件系统类型。其中mount指向ext4_mount函数,kill_sb指向kill_block_super函数。 ```c static int __init init_ext4_fs(void) { int err = init_ext4_fs_once(); if (err) return err; err = register_filesystem(&ext4_fs_type); if (err) goto out1; err = ext4_register_li_request(); if (err) goto out2; return 0; out2: unregister_filesystem(&ext4_fs_type); out1: destroy_ext4_fs(); return err; } module_init(init_ext4_fs); static void __exit exit_ext4_fs(void) { ext4_unregister_li_request(); unregister_filesystem(&ext4_fs_type); destroy_ext4_fs(); } module_exit(exit_ext4_fs); ``` 这部分是初始化和销毁ext4文件系统的函数。 以上就是ext4文件系统的主要代码,对其进行注释可以更好地理解它的实现原理和具体实现方式。

讲解一个Linux内核文件系统源码

本文将简单讲解Linux内核中的ext4文件系统源码。 ext4是Linux中常用的文件系统之一,它的源码位于fs/ext4目录下。在这个目录中,我们可以看到很多文件和子目录,其中比较重要的有: 1. balloc.c:块分配器。 2. dir.c:目录处理程序。 3. file.c:文件处理程序。 4. inode.c:inode处理程序。 5. super.c:超级块处理程序。 这些文件和子目录中的代码实现了ext4文件系统的各个方面,下面我们简单介绍一下每个文件的作用。 balloc.c balloc.c文件实现了ext4文件系统的块分配器,主要负责分配和释放数据块。它包括多个函数,其中比较重要的有: - ext4_new_blocks:分配一个或多个数据块。 - ext4_free_blocks:释放一个或多个数据块。 dir.c dir.c文件实现了ext4文件系统的目录处理程序,主要负责处理目录项的添加、查找和删除等操作。它包括多个函数,其中比较重要的有: - ext4_add_entry:添加一个目录项。 - ext4_delete_entry:删除一个目录项。 - ext4_find_entry:查找一个目录项。 file.c file.c文件实现了ext4文件系统的文件处理程序,主要负责文件的读写操作。它包括多个函数,其中比较重要的有: - ext4_file_read:读取一个文件。 - ext4_file_write:写入一个文件。 inode.c inode.c文件实现了ext4文件系统的inode处理程序,主要负责inode的创建、删除和修改等操作。它包括多个函数,其中比较重要的有: - ext4_new_inode:创建一个inode。 - ext4_delete_inode:删除一个inode。 - ext4_set_inode_flags:修改一个inode的标志位。 super.c super.c文件实现了ext4文件系统的超级块处理程序,主要负责文件系统的初始化和挂载等操作。它包括多个函数,其中比较重要的有: - ext4_fill_super:初始化一个文件系统。 - ext4_mount:挂载一个文件系统。 除了以上这些文件之外,ext4文件系统还包括了很多其他的源码文件,比如block_validity.c、ext4_jbd2.c、ext4_xattr.c等等,它们实现了文件系统的不同功能。如果想深入了解ext4文件系统的源码,可以阅读这些文件的代码。

相关推荐

最新推荐

recommend-type

数据库管理工具:dbeaver-ce-23.1.5-macos-aarch64.dmg

1.DBeaver是一款通用数据库工具,专为开发人员和数据库管理员设计。 2.DBeaver支持多种数据库系统,包括但不限于MySQL、PostgreSQL、Oracle、DB2、MSSQL、Sybase、Mimer、HSQLDB、Derby、SQLite等,几乎涵盖了市场上所有的主流数据库。 3.支持的操作系统:包括Windows(2000/XP/2003/Vista/7/10/11)、Linux、Mac OS、Solaris、AIX、HPUX等。 4.主要特性: 数据库管理:支持数据库元数据浏览、元数据编辑(包括表、列、键、索引等)、SQL语句和脚本的执行、数据导入导出等。 用户界面:提供图形界面来查看数据库结构、执行SQL查询和脚本、浏览和导出数据,以及处理BLOB/CLOB数据等。用户界面设计简洁明了,易于使用。 高级功能:除了基本的数据库管理功能外,DBeaver还提供了一些高级功能,如数据库版本控制(可与Git、SVN等版本控制系统集成)、数据分析和可视化工具(如图表、统计信息和数据报告)、SQL代码自动补全等。
recommend-type

一份关于信号与系统的大纲教程!!!!!!!!!!!!!

一份关于信号与系统的大纲教程!!!!!!!!!!!!!
recommend-type

【课件】7.5.1散列表的基本概念.pdf

【课件】7.5.1散列表的基本概念
recommend-type

【课件】8.7.4置换-选择排序.pdf

【课件】8.7.4置换-选择排序
recommend-type

Delphi 12 控件之unidac-10.2.1-d29pro.exe

unidac_10.2.1_d29pro.exe
recommend-type

藏经阁-应用多活技术白皮书-40.pdf

本资源是一份关于“应用多活技术”的专业白皮书,深入探讨了在云计算环境下,企业如何应对灾难恢复和容灾需求。它首先阐述了在数字化转型过程中,容灾已成为企业上云和使用云服务的基本要求,以保障业务连续性和数据安全性。随着云计算的普及,灾备容灾虽然曾经是关键策略,但其主要依赖于数据级别的备份和恢复,存在数据延迟恢复、高成本以及扩展性受限等问题。 应用多活(Application High Availability,简称AH)作为一种以应用为中心的云原生容灾架构,被提出以克服传统灾备的局限。它强调的是业务逻辑层面的冗余和一致性,能在面对各种故障时提供快速切换,确保服务不间断。白皮书中详细介绍了应用多活的概念,包括其优势,如提高业务连续性、降低风险、减少停机时间等。 阿里巴巴作为全球领先的科技公司,分享了其在应用多活技术上的实践历程,从早期集团阶段到云化阶段的演进,展示了企业在实际操作中的策略和经验。白皮书还涵盖了不同场景下的应用多活架构,如同城、异地以及混合云环境,深入剖析了相关的技术实现、设计标准和解决方案。 技术分析部分,详细解析了应用多活所涉及的技术课题,如解决的技术问题、当前的研究状况,以及如何设计满足高可用性的系统。此外,从应用层的接入网关、微服务组件和消息组件,到数据层和云平台层面的技术原理,都进行了详尽的阐述。 管理策略方面,讨论了应用多活的投入产出比,如何平衡成本和收益,以及如何通过能力保鲜保持系统的高效运行。实践案例部分列举了不同行业的成功应用案例,以便读者了解实际应用场景的效果。 最后,白皮书展望了未来趋势,如混合云多活的重要性、应用多活作为云原生容灾新标准的地位、分布式云和AIOps对多活的推动,以及在多云多核心架构中的应用。附录则提供了必要的名词术语解释,帮助读者更好地理解全文内容。 这份白皮书为企业提供了全面而深入的应用多活技术指南,对于任何寻求在云计算时代提升业务韧性的组织来说,都是宝贵的参考资源。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB矩阵方程求解与机器学习:在机器学习算法中的应用

![matlab求解矩阵方程](https://img-blog.csdnimg.cn/041ee8c2bfa4457c985aa94731668d73.png) # 1. MATLAB矩阵方程求解基础** MATLAB中矩阵方程求解是解决线性方程组和矩阵方程的关键技术。本文将介绍MATLAB矩阵方程求解的基础知识,包括矩阵方程的定义、求解方法和MATLAB中常用的求解函数。 矩阵方程一般形式为Ax=b,其中A为系数矩阵,x为未知数向量,b为常数向量。求解矩阵方程的过程就是求解x的值。MATLAB提供了多种求解矩阵方程的函数,如solve、inv和lu等。这些函数基于不同的算法,如LU分解
recommend-type

触发el-menu-item事件获取的event对象

触发`el-menu-item`事件时,会自动传入一个`event`对象作为参数,你可以通过该对象获取触发事件的具体信息,例如触发的元素、鼠标位置、键盘按键等。具体可以通过以下方式获取该对象的属性: 1. `event.target`:获取触发事件的目标元素,即`el-menu-item`元素本身。 2. `event.currentTarget`:获取绑定事件的元素,即包含`el-menu-item`元素的`el-menu`组件。 3. `event.key`:获取触发事件时按下的键盘按键。 4. `event.clientX`和`event.clientY`:获取触发事件时鼠标的横纵坐标
recommend-type

藏经阁-阿里云计算巢加速器:让优秀的软件生于云、长于云-90.pdf

阿里云计算巢加速器是阿里云在2022年8月飞天技术峰会上推出的一项重要举措,旨在支持和服务于企业服务领域的创新企业。通过这个平台,阿里云致力于构建一个开放的生态系统,帮助软件企业实现从云端诞生并持续成长,增强其竞争力。该加速器的核心价值在于提供1对1的技术专家支持,确保ISV(独立软件供应商)合作伙伴能获得与阿里云产品同等的技术能力,从而保障用户体验的一致性。此外,入选的ISV还将享有快速在钉钉和云市场上线的绿色通道,以及与行业客户和投资机构的对接机会,以加速业务发展。 活动期间,包括百奥利盟、极智嘉、EMQ、KodeRover、MemVerge等30家企业成为首批计算巢加速器成员,与阿里云、钉钉以及投资界专家共同探讨了技术进步、产品融合、战略规划和资本市场的关键议题。通过这次合作,企业可以借助阿里云的丰富资源和深厚技术实力,应对数字化转型中的挑战,比如精准医疗中的数据处理加速、物流智慧化的升级、数字孪生的普及和云原生图数据库的构建。 阿里云计算巢加速器不仅是一个技术支持平台,也是企业成长的催化剂。它通过举办类似2023年2月的集结活动,展示了如何通过云计算生态的力量,帮助企业在激烈的竞争中找到自己的定位,实现可持续发展。参与其中的优秀企业如神策和ONES等,都在这个平台上得到了加速和赋能,共同推动了企业服务领域的创新与进步。总结来说,阿里云计算巢加速器是一个集技术、资源和生态支持于一体的全方位服务平台,旨在帮助企业软件产业在云端绽放光彩。