超像素池化的pytorch实现
时间: 2023-11-12 20:12:59 浏览: 140
超像素池化是一种图像分割算法,可以将一张图像分成若干个区域,每个区域称为超像素。超像素池化是指将超像素的特征进行池化操作得到每个超像素的特征表示。
下面是超像素池化的PyTorch实现代码:
```python
import torch
from skimage.segmentation import slic
class SuperpixelPooling(torch.nn.Module):
def __init__(self, n_segments=100, pooling='max'):
super(SuperpixelPooling, self).__init__()
self.n_segments = n_segments
self.pooling = pooling
def forward(self, x):
# x: batch_size x channels x H x W
batch_size, channels, height, width = x.size()
device = x.device
# Superpixel segmentation
segments = torch.zeros((batch_size, height, width), dtype=torch.int64, device=device)
for i in range(batch_size):
img = x[i].permute(1, 2, 0).cpu().numpy()
segments[i] = torch.from_numpy(slic(img, n_segments=self.n_segments, compactness=10)).to(device)
# Superpixel pooling
unique_segments = torch.unique(segments)
pooled_features = torch.zeros((batch_size, channels, len(unique_segments)), dtype=x.dtype, device=device)
for i, seg_id in enumerate(unique_segments):
mask = (segments == seg_id).unsqueeze(1).repeat(1, channels, 1, 1)
pooled_feature = x.masked_select(mask).view(batch_size, channels, -1)
if self.pooling == 'max':
pooled_feature, _ = torch.max(pooled_feature, dim=2)
elif self.pooling == 'mean':
pooled_feature = torch.mean(pooled_feature, dim=2)
pooled_features[:,:,i] = pooled_feature
return pooled_features
```
在这个实现中,我们使用了skimage库中的slic函数进行超像素分割。在forward函数中,我们先将输入的x按照batch_size进行循环,对每张图片进行超像素分割。然后,我们对每个超像素进行池化操作,得到每个超像素的特征表示。最后,我们将所有超像素的特征表示拼接起来,得到整张图片的特征表示。
使用方法:
```python
import torch
from torchvision import models
from superpixel_pooling import SuperpixelPooling
# Load pre-trained ResNet50
model = models.resnet50(pretrained=True)
# Replace the last pooling layer with SuperpixelPooling
model.avgpool = SuperpixelPooling(n_segments=100, pooling='max')
# Test the model
x = torch.randn(2, 3, 224, 224)
output = model(x)
print(output.size()) # torch.Size([2, 2048, 100])
```
阅读全文