def __init__(self, max_depth=None): self.max_depth = max_depth def fit(self, X, y): self.n_classes_ = len(set(y)) self.n_features_ = X.shape[1] self.tree_ = self._grow_tree(X, y) def predict(self, X): return [self._predict(inputs) for inputs in X] def _best_split(self, X, y): m = y.size if m <= 1: return None, None num_parent = [np.sum(y == c) for c in range(self.n_classes_)] best_gini = 1.0 - sum((n / m) ** 2 for n in num_parent) best_idx, best_thr = None, None for idx in range(self.n_features_): thresholds, classes = zip(*sorted(zip(X[:, idx], y))) num_left = [0] * self.n_classes_ num_right = num_parent.copy() for i in range(1, m): c = classes[i - 1] num_left[c] += 1 num_right[c] -= 1 gini_left = 1.0 - sum((num_left[x] / i) ** 2 for x in range(self.n_classes_)) gini_right = 1.0 - sum((num_right[x] / (m - i)) ** 2 for x in range(self.n_classes_)) gini = (i * gini_left + (m - i) * gini_right) / m if thresholds[i] == thresholds[i - 1]: continue if gini < best_gini: best_gini = gini best_idx = idx best_thr = (thresholds[i] + thresholds[i - 1]) / 2 return best_idx, best_thr解释这段代码

时间: 2024-02-15 08:28:53 浏览: 91
这段代码实现了一个分类树的基本功能,其中包括三个主要方法: 1. `__init__(self, max_depth=None)`:构造方法,初始化分类树的最大深度。 2. `fit(self, X, y)`:拟合方法,用于训练分类树。它首先计算类别数量和特征数量,然后调用 `_grow_tree` 方法生成分类树。 3. `predict(self, X)`:预测方法,用于对新数据进行分类。它遍历输入数据集中的每一行,调用 `_predict` 方法对其进行分类,最终返回预测结果。 此外,还有一个辅助方法 `_best_split(self, X, y)`,用于寻找最佳分裂点,它通过计算分裂后的 Gini 指数来评估分裂的效果,找到最小化 Gini 指数的分裂点作为最佳分裂点。其中,`X` 是输入数据的特征矩阵,`y` 是对应的类别标签。具体实现过程如下: 首先,统计每个类别在当前节点中的数量,并计算出当前节点的 Gini 指数。 然后,遍历每一个特征,对每个特征中的数据进行排序,找到每个数据点作为分裂点时,分裂后左右子节点的 Gini 指数,最终计算出加权平均的 Gini 指数,并找到 Gini 指数最小的分裂点。 最后,返回最佳分裂点的特征索引和分裂阈值。
相关问题

import numpy as np class Node: j = None theta = None p = None left = None right = None class DecisionTreeBase: def __init__(self, max_depth, feature_sample_rate, get_score): self.max_depth = max_depth self.feature_sample_rate = feature_sample_rate self.get_score = get_score def split_data(self, j, theta, X, idx): idx1, idx2 = list(), list() for i in idx: value = X[i][j] if value <= theta: idx1.append(i) else: idx2.append(i) return idx1, idx2 def get_random_features(self, n): shuffled = np.random.permutation(n) size = int(self.feature_sample_rate * n) selected = shuffled[:size] return selected def find_best_split(self, X, y, idx): m, n = X.shape best_score = float("inf") best_j = -1 best_theta = float("inf") best_idx1, best_idx2 = list(), list() selected_j = self.get_random_features(n) for j in selected_j: thetas = set([x[j] for x in X]) for theta in thetas: idx1, idx2 = self.split_data(j, theta, X, idx) if min(len(idx1), len(idx2)) == 0 : continue score1, score2 = self.get_score(y, idx1), self.get_score(y, idx2) w = 1.0 * len(idx1) / len(idx) score = w * score1 + (1-w) * score2 if score < best_score: best_score = score best_j = j best_theta = theta best_idx1 = idx1 best_idx2 = idx2 return best_j, best_theta, best_idx1, best_idx2, best_score def generate_tree(self, X, y, idx, d): r = Node() r.p = np.average(y[idx], axis=0) if d == 0 or len(idx)<2: return r current_score = self.get_score(y, idx) j, theta, idx1, idx2, score = self.find_best_split(X, y, idx) if score >= current_score: return r r.j = j r.theta = theta r.left = self.generate_tree(X, y, idx1, d-1) r.right = self.generate_tree(X, y, idx2, d-1) return r def fit(self, X, y): self.root = self.generate_tree(X, y, range(len(X)), self.max_depth) def get_prediction(self, r, x): if r.left == None and r.right == None: return r.p value = x[r.j] if value <= r.theta: return self.get_prediction(r.left, x) else: return self.get_prediction(r.right, x) def predict(self, X): y = list() for i in range(len(X)): y.append(self.get_prediction(self.root, X[i])) return np.array(y)

这段代码实现了一个基于决策树的分类器,其中包括以下几个类和方法: 1. Node类:表示决策树节点的类,包括属性j表示节点所选择的特征,属性theta表示节点所选择的特征的阈值,属性p表示节点的预测值,属性left和right分别表示左子树和右子树。 2. DecisionTreeBase类:表示决策树分类器的基类,包括方法__init__()、split_data()、get_random_features()、find_best_split()、generate_tree()、fit()、get_prediction()和predict()。 3. __init__(self, max_depth, feature_sample_rate, get_score)方法:初始化决策树分类器的参数,包括最大深度、特征采样率和评价指标。 4. split_data(self, j, theta, X, idx)方法:根据特征j和阈值theta将数据集X中的数据划分为两部分,返回划分后的两部分数据在数据集X中的索引。 5. get_random_features(self, n)方法:从数据集X中随机选择一定比例的特征,返回特征的索引。 6. find_best_split(self, X, y, idx)方法:在数据集X和标签y中,根据评价指标找到最优的特征和阈值,返回最优特征的索引、最优阈值、划分后的两部分数据在数据集X中的索引以及最优评价指标的值。 7. generate_tree(self, X, y, idx, d)方法:根据数据集X、标签y和索引idx生成一棵决策树,返回根节点。 8. fit(self, X, y)方法:训练决策树分类器,生成决策树。 9. get_prediction(self, r, x)方法:对于输入的数据x,根据决策树节点r的特征和阈值进行判断,选择左子树或右子树,并递归调用get_prediction()方法,直到到达叶子节点返回预测值。 10. predict(self, X)方法:对于输入的数据集X,返回预测值。

编写Python代码,利用决策树方法进行最高天气预测 注意不可以使用sklearn训练模型 year,moth,day,week分别表示的具体的时间 temp_2:前天的最高温度值 temp_1:昨天的最高温度值 average:在历史中,每年这一天的平均最高温度值 actual:标签值,当天的真实最高温度 其中,原始数据中在week列中并不是一些数值特征,而是表示周几的字符串,需要进行数据预处理,使用编码方式:One-Hot Encoding,one-hot 编码类似于虚拟变量,是一种将分类变量转换为几个二进制列的方法。其中 1 代表某个输入属于该类别。数据集为temps.csv。使用创建三个python包第一个命名为"decision_tree_base.py"第二个名为"decision_tree_classifier.py"第三个命名为"random_forest_ classifier.py"最后使用graphviz画图

以下是一个简单的决策树分类器的 Python 代码示例,基于 ID3 算法和信息增益作为分裂准则: decision_tree_base.py: ```python import numpy as np class Node: """决策树节点类""" def __init__(self, feature=None, threshold=None, value=None, left=None, right=None): self.feature = feature # 当前节点分裂的特征 self.threshold = threshold # 当前节点分裂的阈值 self.value = value # 叶节点的预测值 self.left = left # 左子树 self.right = right # 右子树 class DecisionTree: """决策树分类器类""" def __init__(self, max_depth=float('inf'), min_samples_split=2, criterion='entropy'): self.max_depth = max_depth # 决策树的最大深度 self.min_samples_split = min_samples_split # 分裂所需的最小样本数 self.criterion = criterion # 分裂准则,默认为信息熵 self.tree = None # 决策树模型 def fit(self, X, y): self.tree = self._build_tree(X, y, depth=0) def predict(self, X): y_pred = [self._predict_example(x, self.tree) for x in X] return np.array(y_pred) def _build_tree(self, X, y, depth): """递归构建决策树""" n_samples, n_features = X.shape # 如果样本数小于分裂所需的最小样本数,或者决策树深度达到最大深度,直接返回叶节点 if n_samples < self.min_samples_split or depth >= self.max_depth: return Node(value=np.mean(y)) # 计算当前节点的分裂准则的值 if self.criterion == 'entropy': gain_function = self._information_gain elif self.criterion == 'gini': gain_function = self._gini_impurity gain, feature, threshold = max((gain_function(X[:, i], y), i, t) for i in range(n_features) for t in np.unique(X[:, i])) # 如果当前节点无法分裂,则返回叶节点 if gain == 0: return Node(value=np.mean(y)) # 根据当前节点的最优特征和阈值进行分裂 left_idxs = X[:, feature] <= threshold right_idxs = X[:, feature] > threshold left = self._build_tree(X[left_idxs], y[left_idxs], depth+1) right = self._build_tree(X[right_idxs], y[right_idxs], depth+1) return Node(feature=feature, threshold=threshold, left=left, right=right) def _predict_example(self, x, tree): """预测单个样本""" if tree.value is not None: return tree.value if x[tree.feature] <= tree.threshold: return self._predict_example(x, tree.left) else: return self._predict_example(x, tree.right) def _information_gain(self, X_feature, y): """计算信息增益""" entropy_parent = self._entropy(y) n = len(X_feature) thresholds = np.unique(X_feature) entropies_children = [self._entropy(y[X_feature <= t]) * sum(X_feature <= t) / n + self._entropy(y[X_feature > t]) * sum(X_feature > t) / n for t in thresholds] weights_children = [sum(X_feature <= t) / n for t in thresholds] entropy_children = sum(entropies_children) return entropy_parent - entropy_children def _gini_impurity(self, X_feature, y): """计算基尼不纯度""" n = len(X_feature) thresholds = np.unique(X_feature) ginis_children = [self._gini_impurity(y[X_feature <= t]) * sum(X_feature <= t) / n + self._gini_impurity(y[X_feature > t]) * sum(X_feature > t) / n for t in thresholds] weights_children = [sum(X_feature <= t) / n for t in thresholds] gini_children = sum(ginis_children) return gini_children def _entropy(self, y): """计算信息熵""" _, counts = np.unique(y, return_counts=True) probs = counts / len(y) return -np.sum(probs * np.log2(probs + 1e-6)) ``` decision_tree_classifier.py: ```python import pandas as pd from decision_tree_base import DecisionTree class DecisionTreeClassifier(DecisionTree): """决策树分类器类""" def __init__(self, max_depth=float('inf'), min_samples_split=2, criterion='entropy'): super().__init__(max_depth, min_samples_split, criterion) def fit(self, X, y): y = pd.factorize(y)[0] # 将分类标签转换为数值 super().fit(X, y) def predict(self, X): y_pred = super().predict(X) return pd.Series(y_pred).map({i: v for i, v in enumerate(np.unique(y_pred))}).values ``` random_forest_classifier.py: ```python import numpy as np from decision_tree_classifier import DecisionTreeClassifier class RandomForestClassifier: """随机森林分类器类""" def __init__(self, n_estimators=100, max_depth=float('inf'), min_samples_split=2, criterion='entropy', max_features='sqrt'): self.n_estimators = n_estimators # 决策树的数量 self.max_depth = max_depth # 决策树的最大深度 self.min_samples_split = min_samples_split # 分裂所需的最小样本数 self.criterion = criterion # 分裂准则,默认为信息熵 self.max_features = max_features # 每棵决策树使用的最大特征数 self.trees = [] # 决策树列表 def fit(self, X, y): n_samples, n_features = X.shape max_features = int(np.ceil(np.sqrt(n_features))) if self.max_features == 'sqrt' else self.max_features for i in range(self.n_estimators): tree = DecisionTreeClassifier(max_depth=self.max_depth, min_samples_split=self.min_samples_split, criterion=self.criterion) idxs = np.random.choice(n_samples, n_samples, replace=True) # 自助采样 X_sampled, y_sampled = X[idxs], y[idxs] tree.fit(X_sampled[:, np.random.choice(n_features, max_features, replace=False)], y_sampled) # 随机选取特征 self.trees.append(tree) def predict(self, X): y_preds = np.array([tree.predict(X[:, tree.feature_importances_ > 0]) for tree in self.trees]) return np.apply_along_axis(lambda x: np.bincount(x).argmax(), axis=0, arr=y_preds) ``` 关于如何使用 One-Hot Encoding 进行数据预处理,可以使用 pandas 库的 `get_dummies` 函数。例如,如果数据集中有一列名为 `week`,包含了一些字符串,我们可以将其转换为多个二进制列,每列代表一种字符串对应的编码。示例代码如下: ```python import pandas as pd # 读取数据集 df = pd.read_csv('temps.csv') # 将字符串编码为多个二进制列 df_encoded = pd.get_dummies(df, columns=['week']) ``` 最后,使用 graphviz 库画图可以通过以下代码实现: ```python import graphviz from sklearn.tree import export_graphviz def plot_tree(tree): """绘制决策树""" dot_data = export_graphviz(tree, out_file=None, feature_names=X.columns, class_names=y.unique(), filled=True) graph = graphviz.Source(dot_data) return graph ``` 其中,`tree` 是一个决策树对象,`X` 是输入特征的 DataFrame,`y` 是标签的 Series。
阅读全文

相关推荐

最新推荐

recommend-type

精选微信小程序源码:生鲜商城小程序(含源码+源码导入视频教程&文档教程,亲测可用)

微信小程序是一种轻量级的应用开发平台,主要针对移动端,由腾讯公司推出,旨在提供便捷的线上服务体验。在这个“微信小程序生鲜商城小程序源码”中,包含了一系列资源,帮助开发者或商家快速搭建自己的生鲜电商平台。 源码是程序的核心部分,它是由编程语言编写的指令集,用于控制计算机执行特定任务。在这个项目中,源码是实现生鲜商城功能的基础,包括用户界面设计、商品浏览、购物车管理、订单处理、支付接口集成等模块。开发者可以通过查看和修改源码,根据自己的需求进行定制化开发,比如调整界面风格、添加促销活动、优化支付流程等。 源码导入视频教程与文档教程则是学习和部署这些源码的关键。视频教程通常通过视觉演示,详细展示如何将源码导入到微信开发者工具中,设置项目环境,调试代码,以及解决可能出现的问题。这对于不熟悉小程序开发的初学者来说,是非常实用的学习资源。文档教程则可能更侧重于文字解释和步骤指导,对于需要查阅特定信息或在遇到问题时进行查证很有帮助。 “详细图文文档教程.doc”很可能是对整个源码结构、功能模块和操作步骤的详细说明,包括如何配置数据库连接、设置API接口、调整页面布局等。文档中的图文结合可以清晰
recommend-type

Docker-compose容器编排

微服务改造升级并生成新镜像
recommend-type

整合Springboot shiro jpa mysql 实现权限管理系统(附源码地址)

整合Springboot shiro jpa mysql 实现权限管理系统(附源码地址)
recommend-type

正整数数组验证库:确保值符合正整数规则

资源摘要信息:"validate.io-positive-integer-array是一个JavaScript库,用于验证一个值是否为正整数数组。该库可以通过npm包管理器进行安装,并且提供了在浏览器中使用的方案。" 该知识点主要涉及到以下几个方面: 1. JavaScript库的使用:validate.io-positive-integer-array是一个专门用于验证数据的JavaScript库,这是JavaScript编程中常见的应用场景。在JavaScript中,库是一个封装好的功能集合,可以很方便地在项目中使用。通过使用这些库,开发者可以节省大量的时间,不必从头开始编写相同的代码。 2. npm包管理器:npm是Node.js的包管理器,用于安装和管理项目依赖。validate.io-positive-integer-array可以通过npm命令"npm install validate.io-positive-integer-array"进行安装,非常方便快捷。这是现代JavaScript开发的重要工具,可以帮助开发者管理和维护项目中的依赖。 3. 浏览器端的使用:validate.io-positive-integer-array提供了在浏览器端使用的方案,这意味着开发者可以在前端项目中直接使用这个库。这使得在浏览器端进行数据验证变得更加方便。 4. 验证正整数数组:validate.io-positive-integer-array的主要功能是验证一个值是否为正整数数组。这是一个在数据处理中常见的需求,特别是在表单验证和数据清洗过程中。通过这个库,开发者可以轻松地进行这类验证,提高数据处理的效率和准确性。 5. 使用方法:validate.io-positive-integer-array提供了简单的使用方法。开发者只需要引入库,然后调用isValid函数并传入需要验证的值即可。返回的结果是一个布尔值,表示输入的值是否为正整数数组。这种简单的API设计使得库的使用变得非常容易上手。 6. 特殊情况处理:validate.io-positive-integer-array还考虑了特殊情况的处理,例如空数组。对于空数组,库会返回false,这帮助开发者避免在数据处理过程中出现错误。 总结来说,validate.io-positive-integer-array是一个功能实用、使用方便的JavaScript库,可以大大简化在JavaScript项目中进行正整数数组验证的工作。通过学习和使用这个库,开发者可以更加高效和准确地处理数据验证问题。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【损失函数与随机梯度下降】:探索学习率对损失函数的影响,实现高效模型训练

![【损失函数与随机梯度下降】:探索学习率对损失函数的影响,实现高效模型训练](https://img-blog.csdnimg.cn/20210619170251934.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzQzNjc4MDA1,size_16,color_FFFFFF,t_70) # 1. 损失函数与随机梯度下降基础 在机器学习中,损失函数和随机梯度下降(SGD)是核心概念,它们共同决定着模型的训练过程和效果。本
recommend-type

在ADS软件中,如何选择并优化低噪声放大器的直流工作点以实现最佳性能?

在使用ADS软件进行低噪声放大器设计时,选择和优化直流工作点是至关重要的步骤,它直接关系到放大器的稳定性和性能指标。为了帮助你更有效地进行这一过程,推荐参考《ADS软件设计低噪声放大器:直流工作点选择与仿真技巧》,这将为你提供实用的设计技巧和优化方法。 参考资源链接:[ADS软件设计低噪声放大器:直流工作点选择与仿真技巧](https://wenku.csdn.net/doc/9867xzg0gw?spm=1055.2569.3001.10343) 直流工作点的选择应基于晶体管的直流特性,如I-V曲线,确保工作点处于晶体管的最佳线性区域内。在ADS中,你首先需要建立一个包含晶体管和偏置网络
recommend-type

系统移植工具集:镜像、工具链及其他必备软件包

资源摘要信息:"系统移植文件包通常包含了操作系统的核心映像、编译和开发所需的工具链以及其他辅助工具,这些组件共同作用,使得开发者能够在新的硬件平台上部署和运行操作系统。" 系统移植文件包是软件开发和嵌入式系统设计中的一个重要概念。在进行系统移植时,开发者需要将操作系统从一个硬件平台转移到另一个硬件平台。这个过程不仅需要操作系统的系统镜像,还需要一系列工具来辅助整个移植过程。下面将详细说明标题和描述中提到的知识点。 **系统镜像** 系统镜像是操作系统的核心部分,它包含了操作系统启动、运行所需的所有必要文件和配置。在系统移植的语境中,系统镜像通常是指操作系统安装在特定硬件平台上的完整副本。例如,Linux系统镜像通常包含了内核(kernel)、系统库、应用程序、配置文件等。当进行系统移植时,开发者需要获取到适合目标硬件平台的系统镜像。 **工具链** 工具链是系统移植中的关键部分,它包括了一系列用于编译、链接和构建代码的工具。通常,工具链包括编译器(如GCC)、链接器、库文件和调试器等。在移植过程中,开发者使用工具链将源代码编译成适合新硬件平台的机器代码。例如,如果原平台使用ARM架构,而目标平台使用x86架构,则需要重新编译源代码,生成可以在x86平台上运行的二进制文件。 **其他工具** 除了系统镜像和工具链,系统移植文件包还可能包括其他辅助工具。这些工具可能包括: - 启动加载程序(Bootloader):负责初始化硬件设备,加载操作系统。 - 驱动程序:使得操作系统能够识别和管理硬件资源,如硬盘、显卡、网络适配器等。 - 配置工具:用于配置操作系统在新硬件上的运行参数。 - 系统测试工具:用于检测和验证移植后的操作系统是否能够正常运行。 **文件包** 文件包通常是指所有这些组件打包在一起的集合。这些文件可能以压缩包的形式存在,方便下载、存储和传输。文件包的名称列表中可能包含如下内容: - 操作系统特定版本的镜像文件。 - 工具链相关的可执行程序、库文件和配置文件。 - 启动加载程序的二进制代码。 - 驱动程序包。 - 配置和部署脚本。 - 文档说明,包括移植指南、版本说明和API文档等。 在进行系统移植时,开发者首先需要下载对应的文件包,解压后按照文档中的指导进行操作。在整个过程中,开发者需要具备一定的硬件知识和软件开发经验,以确保操作系统能够在新的硬件上正确安装和运行。 总结来说,系统移植文件包是将操作系统和相关工具打包在一起,以便于开发者能够在新硬件平台上进行系统部署。了解和掌握这些组件的使用方法和作用是进行系统移植工作的重要基础。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【损失函数与批量梯度下降】:分析批量大小对损失函数影响,优化模型学习路径

![损失函数(Loss Function)](https://img-blog.csdnimg.cn/20190921134848621.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80Mzc3MjUzMw==,size_16,color_FFFFFF,t_70) # 1. 损失函数与批量梯度下降基础 在机器学习和深度学习领域,损失函数和批量梯度下降是核心概念,它们是模型训练过程中的基石。理解它们的基础概念对于构建