用lstm预测血糖的pytorch代码

时间: 2023-10-01 22:10:17 浏览: 41
以下是使用 PyTorch 实现 LSTM 预测血糖的示例代码: ``` import torch import torch.nn as nn class LSTMModel(nn.Module): def __init__(self, input_size, hidden_size, num_layers, output_size): super().__init__() self.hidden_size = hidden_size self.num_layers = num_layers self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True) self.fc = nn.Linear(hidden_size, output_size) def forward(self, input_seq): lstm_out, (h_n, c_n) = self.lstm(input_seq) out = self.fc(lstm_out[:, -1, :]) return out.view(-1) # 设置超参数 input_size = 1 hidden_size = 64 num_layers = 2 output_size = 1 lr = 0.001 num_epochs = 50 # 加载数据集 train_data = torch.Tensor([[1.2], [2.4], [2.5], [3.1], [4.5], [3.3], [6.5], [4.3], [5.2], [5.5], [6.1], [7.3], [8.1], [6.9], [9.2]]) train_labels = torch.Tensor([[1.4], [1.8], [2.0], [2.2], [2.8], [2.5], [3.2], [2.7], [2.9], [3.0], [3.1], [3.3], [3.5], [3.4], [3.8]]) # 初始化模型 model = LSTMModel(input_size, hidden_size, num_layers, output_size) # 定义损失函数和优化器 criterion = nn.MSELoss() optimizer = torch.optim.Adam(model.parameters(), lr=lr) # 训练模型 for epoch in range(num_epochs): optimizer.zero_grad() y_pred = model(train_data) loss = criterion(y_pred, train_labels) loss.backward() optimizer.step() if epoch % 10 == 0: print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, loss.item())) # 预测新数据 with torch.no_grad(): test_data = torch.Tensor([[10.0], [11.0], [12.0]]) pred = model(test_data) print(pred) ``` 这个示例代码定义了一个 LSTM 模型,输入为单个特征(即血糖),然后使用 MSE 作为损失函数进行训练,最终预测新数据。注意,由于这只是示例代码,实际情况下需要更加复杂的数据预处理、超参数选择等操作。

相关推荐

最新推荐

recommend-type

pytorch下使用LSTM神经网络写诗实例

今天小编就为大家分享一篇pytorch下使用LSTM神经网络写诗实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

基于pytorch的lstm参数使用详解

今天小编就为大家分享一篇基于pytorch的lstm参数使用详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

2. 通过python绘制y=e-xsin(2πx)图像

可以使用matplotlib库来绘制这个函数的图像。以下是一段示例代码: ```python import numpy as np import matplotlib.pyplot as plt def func(x): return np.exp(-x) * np.sin(2 * np.pi * x) x = np.linspace(0, 5, 500) y = func(x) plt.plot(x, y) plt.xlabel('x') plt.ylabel('y') plt.title('y = e^{-x} sin(2πx)') plt.show() ``` 运行这段
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

导入numpy库,创建两个包含9个随机数的3*3的矩阵,将两个矩阵分别打印出来,计算两个数组的点积并打印出来。(random.randn()、dot()函数)

可以的,以下是代码实现: ```python import numpy as np # 创建两个包含9个随机数的3*3的矩阵 matrix1 = np.random.randn(3, 3) matrix2 = np.random.randn(3, 3) # 打印两个矩阵 print("Matrix 1:\n", matrix1) print("Matrix 2:\n", matrix2) # 计算两个数组的点积并打印出来 dot_product = np.dot(matrix1, matrix2) print("Dot product:\n", dot_product) ``` 希望