simulate 100 observations from armr model and plot the sample ACF
时间: 2024-10-20 08:09:24 浏览: 22
在R语言中,如果你想要模拟100个观察值来自ARM(自回归移动平均模型),通常会使用`armr`包来进行时间序列分析,例如ARIMA(自回归积分滑动平均模型)。首先,你需要安装并加载必要的库,然后可以使用`arma.sim`函数来生成数据,接着用`acf`函数绘制样本自相关函数(Autocorrelation Function)。
以下是一个简单的步骤示例:
```R
# 安装并加载必要的库
if (!requireNamespace("armr", quietly = TRUE)) {
install.packages("armr")
}
library(armr)
# 指定ARMA模型参数,例如AR(1)模型 AR(p=1),MA(q=0)
model <- arima.sim(list(order = c(1, 0, 0)), n = 100)
# 绘制样本AIC
acf(model, main = "Sample Autocorrelation Function (ACF)")
```
在这个例子中,`order = c(1, 0, 0)`表示AR(1)模型,这意味着只考虑前一时刻的数据作为自回归项,没有移动平均项。你可以根据实际情况调整模型参数。
相关问题
Consider a linear model Y = α + β TX + ε. (1) Set X ∼ MV N(0, Σ), Σ = (ρ |i−j| )p×p (the AR(1) structure), where ρ = 0.5, α = 1, β = (2, 1.5, 0, 0, 1, 0, . . . , 0)T , ε ∼ N(0, 1), simulate Y = α + β TX + ε, where the predictor dimension p = 20 and the sample size n = 200. Here, by the model settings, X1, X2 and X5 are the important variables. (2) Estimate regression coefficients using LASSO using the coordinate decent algorithm and soft thresholding . by use 5-folds CV to choose optimal λ by minimizing the CV prediction error (PE), and plot the PE with different λ. python 代码
以下是使用Python进行LASSO回归及交叉验证的代码,使用的是自己编写的基于坐标下降的LASSO回归模型:
```python
import numpy as np
import matplotlib.pyplot as plt
# 1.生成数据
np.random.seed(123)
p = 20
n = 200
rho = 0.5
alpha = 1
beta = np.array([2, 1.5, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
Sigma = np.zeros((p, p))
for i in range(p):
for j in range(p):
Sigma[i, j] = rho ** np.abs(i - j)
X = np.random.multivariate_normal(np.zeros(p), Sigma, n)
epsilon = np.random.normal(0, 1, n)
Y = alpha + np.dot(X, beta) + epsilon
# 2.定义LASSO回归模型
def soft_threshold(rho, lam):
if rho > lam:
return rho - lam
elif rho < -lam:
return rho + lam
else:
return 0
def coordinate_descent_lasso(X, Y, lam, max_iter=1000, tol=1e-4):
n_samples, n_features = X.shape
beta = np.zeros(n_features)
r = np.dot(X.T, Y - np.dot(X, beta))
for iteration in range(max_iter):
beta_old = np.copy(beta)
for j in range(n_features):
X_j = X[:, j]
r += X_j * beta_old[j]
beta[j] = soft_threshold(rho=np.dot(X_j, Y - r) / n_samples, lam=lam)
r -= X_j * beta[j]
if np.sum(np.abs(beta - beta_old)) < tol:
break
return beta
def lasso_cv(X, Y, lambdas, n_folds=5):
n_samples, n_features = X.shape
kf = KFold(n_splits=n_folds)
cv_errors = []
for lam in lambdas:
errors = []
for train_idxs, test_idxs in kf.split(X):
X_train, Y_train = X[train_idxs], Y[train_idxs]
X_test, Y_test = X[test_idxs], Y[test_idxs]
beta = coordinate_descent_lasso(X_train, Y_train, lam)
Y_pred = np.dot(X_test, beta)
mse = mean_squared_error(Y_test, Y_pred)
errors.append(mse)
cv_errors.append(np.mean(errors))
return cv_errors
# 3.使用LASSO进行回归及交叉验证
lambdas = np.logspace(-5, 2, 100)
cv_errors = lasso_cv(X, Y, lambdas)
min_mse = np.min(cv_errors)
optimal_lambda = lambdas[np.argmin(cv_errors)]
print('Optimal Lambda:', optimal_lambda)
# 4.绘制交叉验证误差随lambda的变化曲线
plt.plot(np.log10(lambdas), cv_errors)
plt.axvline(np.log10(optimal_lambda), linestyle='--', color='r')
plt.xlabel('log10(lambda)')
plt.ylabel('Mean Squared Error')
plt.title('LASSO Cross Validation')
plt.show()
# 5.输出回归系数
beta_hat = coordinate_descent_lasso(X, Y, optimal_lambda)
print('Regression Coefficients:', beta_hat)
```
这里使用了自己编写的基于坐标下降的LASSO回归模型,并使用交叉验证的方法来选择最优的正则化参数lambda,通过绘制交叉验证误差随lambda的变化曲线来确定最优的lambda值,并输出对应的回归系数。
You could also create code to simulate the Monty Hall problem. Create a function named random_door, which uses numpy.random.choice to sample 1 door randomly from a list of integer door indices (1-3 in this case). Use this function to randomly select the door the car is behind and the contestant’s initial choice of doors. Create a function monty_choice, which chooses the door Monty opens, conditional on the contestant’s choice of doors and the door with the car. For the case where the contestant has selected the door with the car, select the door to open by simulating the flip of a fair coin using the np.random.binomial function with n = 1. Create a function win_car, which determines if the contestant wins the car, conditional on the strategy selected, {switch, noswitch}, the door the contestant selected, the door with the car, and the door Monty opened. Create a function named simulation that allows you to run the simulation n = 1000 times, with a switch or noswitch strategy. Execute your simulation for each possible strategy. For the two strategies, plot side by side bar charts showing the numbers of successes and failures for each strategy. Describe the strategy a contestant should adopt for this game. How much will the chosen strategy change the probability of winning a car? Is this result consistent with the conditional probability of this problem?
Sure, I can help you with that.
Here is the code to simulate the Monty Hall problem:
```python
import numpy as np
import matplotlib.pyplot as plt
def random_door():
return np.random.choice([1,2,3])
def monty_choice(contestant_door, car_door):
if contestant_door == car_door:
return np.random.binomial(1, 0.5) + 1
else:
return 6 - contestant_door - car_door
def win_car(strategy, contestant_door, car_door, monty_door):
if strategy == 'switch':
new_door = 6 - contestant_door - monty_door
return new_door == car_door
else:
return contestant_door == car_door
def simulation(n, strategy):
car_door = random_door()
contestant_door = random_door()
monty_door = monty_choice(contestant_door, car_door)
successes = 0
failures = 0
for i in range(n):
if win_car(strategy, contestant_door, car_door, monty_door):
successes += 1
else:
failures += 1
return successes, failures
n = 1000
switch_successes, switch_failures = simulation(n, 'switch')
noswitch_successes, noswitch_failures = simulation(n, 'noswitch')
fig, axs = plt.subplots(1, 2, figsize=(10, 5), sharey=True)
axs[0].bar(['Switch Successes', 'Switch Failures'], [switch_successes, switch_failures])
axs[0].set_title('Switch Strategy')
axs[1].bar(['No Switch Successes', 'No Switch Failures'], [noswitch_successes, noswitch_failures])
axs[1].set_title('No Switch Strategy')
plt.show()
```
This code defines three functions: `random_door` to randomly select a door for the car or the contestant, `monty_choice` to choose the door Monty opens based on the contestant's choice and the location of the car, and `win_car` to determine if the contestant wins the car based on the strategy (switch or no switch), the doors chosen by the contestant and Monty, and the location of the car.
The `simulation` function runs the simulation for a given strategy and number of iterations. It selects the doors for the car and the contestant, chooses the door Monty opens, and then checks if the contestant wins the car based on the chosen strategy.
The code then runs the simulation for both the switch and no switch strategies, and plots the results in side-by-side bar charts.
According to the simulation results, the contestant should switch doors to increase their chances of winning the car. The switch strategy has a higher probability of success than the no switch strategy. This result is consistent with the conditional probability of the problem, which shows that the probability of winning the car is 2/3 if the contestant switches doors, and 1/3 if they do not switch.
阅读全文