写出python使用SVM对cifar-10彩色图像数据集进行分类的代码

时间: 2024-05-11 07:15:53 浏览: 20
感谢您的问题。下面是Python使用SVM对cifar-10彩色图像数据集进行分类的代码: ``` from sklearn import datasets from sklearn import svm import numpy as np # 加载CIFAR-10数据集 cifar_data = datasets.load_cifar10() X = cifar_data.data.astype('float32') / 255.0 y = cifar_data.target.flatten() # 将数据集分为训练集和测试集 train_samples = 50000 X_train, X_test = X[:train_samples], X[train_samples:] y_train, y_test = y[:train_samples], y[train_samples:] # 创建SVM分类器并训练 clf = svm.SVC() clf.fit(X_train.reshape(train_samples, -1), y_train) # 在测试集上进行预测和评估 y_predict = clf.predict(X_test.reshape(-1, 32*32*3)) accuracy = np.mean(y_predict == y_test) print('测试集准确率为:', accuracy) ``` 希望以上代码对您有所帮助,如果您还有其他问题,请继续提问。
相关问题

写出python使用PCA降维对cifar-10彩色图像数据集进行分类的代码

好的,以下是使用PCA降维对cifar-10彩色图像数据集进行分类的Python代码: ```python import numpy as np from sklearn.decomposition import PCA from sklearn.svm import SVC from sklearn.model_selection import train_test_split from keras.datasets import cifar10 # Load CIFAR-10 dataset (X_train, y_train), (X_test, y_test) = cifar10.load_data() # Reshape and normalize the data X_train = X_train.reshape(X_train.shape[0], -1) X_test = X_test.reshape(X_test.shape[0], -1) X_train = X_train.astype('float32') / 255 X_test = X_test.astype('float32') / 255 # Reduce dimensionality with PCA pca = PCA(n_components=100) X_train_pca = pca.fit_transform(X_train) X_test_pca = pca.transform(X_test) # Train SVM classifier clf = SVC(kernel='rbf', C=10, gamma=0.1) clf.fit(X_train_pca, y_train) # Evaluate classifier score = clf.score(X_test_pca, y_test) print('Accuracy:', score) ``` 这段代码首先加载CIFAR-10数据集,然后将图像数据展开为一维向量并进行归一化。接下来,使用PCA将数据降到100维,然后使用SVM训练分类器。 最后,评估分类器的性能并输出准确度。

python svm算法smo cifar_使用smo算法编写svm对CIFAR-10数据分类

SVM算法通过将数据映射到高维空间,将数据分为两个类别。SVM算法的目标是找到一个超平面,可以将数据分为两个类别。SMO算法是一种优化算法,用于求解SVM中的二次规划问题。下面介绍如何使用SMO算法编写SVM对CIFAR-10数据进行分类。 首先,我们需要加载CIFAR-10数据集。CIFAR-10数据集包含10个类别的60000个32x32彩色图像。每个类别包含6000个图像。我们将使用Python中的pickle模块来加载数据集。以下是加载数据集的代码: ```python import pickle import numpy as np def unpickle(file): with open(file, 'rb') as fo: dict = pickle.load(fo, encoding='bytes') return dict def load_cifar10_data(): xs = [] ys = [] for j in range(5): d = unpickle('cifar-10-batches-py/data_batch_%d' % (j + 1)) x = d[b'data'] y = d[b'labels'] xs.append(x) ys.append(y) d = unpickle('cifar-10-batches-py/test_batch') xs.append(d[b'data']) ys.append(d[b'labels']) x = np.concatenate(xs) / np.float32(255) y = np.concatenate(ys) return x.reshape((len(x), -1)), np.array(y) ``` 接下来,我们将使用SMO算法来训练SVM模型。以下是使用SMO算法训练SVM模型的代码: ```python class SVM: def __init__(self, C, toler, kernel_opt=('linear', 0)): self.C = C self.toler = toler self.kernel_opt = kernel_opt def fit(self, X, y): n_samples, n_features = X.shape alpha = np.zeros(n_samples) b = 0 kernel = kernel_set[self.kernel_opt[0]] K = np.zeros((n_samples, n_samples)) for i in range(n_samples): K[:, i] = kernel(X, X[i], self.kernel_opt[1]) iter = 0 while iter < max_iter: num_changed_alphas = 0 for i in range(n_samples): Ei = np.dot(alpha * y, K[:, i]) + b - y[i] if (y[i] * Ei < -self.toler and alpha[i] < self.C) or \ (y[i] * Ei > self.toler and alpha[i] > 0): j = np.random.choice([x for x in range(n_samples) if x != i]) Ej = np.dot(alpha * y, K[:, j]) + b - y[j] alpha_i_old, alpha_j_old = alpha[i], alpha[j] if y[i] != y[j]: L = max(0, alpha[j] - alpha[i]) H = min(self.C, self.C + alpha[j] - alpha[i]) else: L = max(0, alpha[i] + alpha[j] - self.C) H = min(self.C, alpha[i] + alpha[j]) if L == H: continue eta = 2.0 * K[i, j] - K[i, i] - K[j, j] if eta >= 0: continue alpha[j] -= y[j] * (Ei - Ej) / eta alpha[j] = min(alpha[j], H) alpha[j] = max(alpha[j], L) if abs(alpha[j] - alpha_j_old) < 1e-5: continue alpha[i] += y[i] * y[j] * (alpha_j_old - alpha[j]) b1 = b - Ei - y[i] * (alpha[i] - alpha_i_old) * K[i, i] - \ y[j] * (alpha[j] - alpha_j_old) * K[i, j] b2 = b - Ej - y[i] * (alpha[i] - alpha_i_old) * K[i, j] - \ y[j] * (alpha[j] - alpha_j_old) * K[j, j] if 0 < alpha[i] < self.C: b = b1 elif 0 < alpha[j] < self.C: b = b2 else: b = (b1 + b2) / 2 num_changed_alphas += 1 if num_changed_alphas == 0: iter += 1 else: iter = 0 self.X = X self.y = y self.kernel = kernel self.alpha = alpha self.b = b def predict(self, X): n_samples, n_features = X.shape K = np.zeros((n_samples, len(self.X))) for i in range(n_samples): K[i, :] = self.kernel(self.X, X[i], self.kernel_opt[1]) y_pred = np.dot(self.alpha * self.y, K) + self.b return np.sign(y_pred) ``` 最后,我们使用以下代码来加载数据集并使用SMO算法训练SVM模型: ```python X, y = load_cifar10_data() y[y == 0] = -1 X_train, X_test = X[:50000], X[50000:] y_train, y_test = y[:50000], y[50000:] svm = SVM(C=1.0, toler=0.001, kernel_opt=('rbf', 1)) svm.fit(X_train, y_train) y_pred_train = svm.predict(X_train) y_pred_test = svm.predict(X_test) train_acc = np.mean(y_train == y_pred_train) test_acc = np.mean(y_test == y_pred_test) print('train_acc:', train_acc) print('test_acc:', test_acc) ``` 这样我们就使用SMO算法编写了SVM对CIFAR-10数据进行分类的代码。

相关推荐

最新推荐

recommend-type

python,sklearn,svm,遥感数据分类,代码实例

@python,sklearn,svm,遥感数据分类,代码实例 python_sklearn_svm遥感数据分类代码实例 (1)svm原理简述 支持向量机(Support Vector Machine,即SVM)是包括分类(Classification)、回归(Regression)和异常检测...
recommend-type

python实现基于SVM手写数字识别功能

主要为大家详细介绍了python实现基于SVM手写数字识别功能,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
recommend-type

使用Python做垃圾分类的原理及实例代码附

- 为了实现实际的垃圾分类,可以收集大量带有标签的垃圾分类数据集,对图像进行标注,然后训练模型。 - 对于文本数据,可以建立一个垃圾名称的数据库,通过关键词匹配或使用NLP模型预测垃圾类别。 - 结合物联网...
recommend-type

python实现LBP方法提取图像纹理特征实现分类的步骤

在实际应用中,通常会使用SVM、KNN或神经网络等分类器对这些特征进行训练和预测,以实现图像分类。 总结来说,通过Python实现LBP方法提取图像纹理特征的步骤包括: 1. 图像预处理:读取图像,切割成训练集和测试集...
recommend-type

基于多分类非线性SVM(+交叉验证法)的MNIST手写数据集训练(无框架)算法

1.将数据进行预处理。 2.通过一对一方法将45类训练样本((0,1),(0,2),…(1,2)…(2,3))送入交叉验证法,训练算法为smo 3.得出45个模型,测试时在利用投票法判定 数据结构 '''**************************************...
recommend-type

京瓷TASKalfa系列维修手册:安全与操作指南

"该资源是一份针对京瓷TASKalfa系列多款型号打印机的维修手册,包括TASKalfa 2020/2021/2057,TASKalfa 2220/2221,TASKalfa 2320/2321/2358,以及DP-480,DU-480,PF-480等设备。手册标注为机密,仅供授权的京瓷工程师使用,强调不得泄露内容。手册内包含了重要的安全注意事项,提醒维修人员在处理电池时要防止爆炸风险,并且应按照当地法规处理废旧电池。此外,手册还详细区分了不同型号产品的打印速度,如TASKalfa 2020/2021/2057的打印速度为20张/分钟,其他型号则分别对应不同的打印速度。手册还包括修订记录,以确保信息的最新和准确性。" 本文档详尽阐述了京瓷TASKalfa系列多功能一体机的维修指南,适用于多种型号,包括速度各异的打印设备。手册中的安全警告部分尤为重要,旨在保护维修人员、用户以及设备的安全。维修人员在操作前必须熟知这些警告,以避免潜在的危险,如不当更换电池可能导致的爆炸风险。同时,手册还强调了废旧电池的合法和安全处理方法,提醒维修人员遵守地方固体废弃物法规。 手册的结构清晰,有专门的修订记录,这表明手册会随着设备的更新和技术的改进不断得到完善。维修人员可以依靠这份手册获取最新的维修信息和操作指南,确保设备的正常运行和维护。 此外,手册中对不同型号的打印速度进行了明确的区分,这对于诊断问题和优化设备性能至关重要。例如,TASKalfa 2020/2021/2057系列的打印速度为20张/分钟,而TASKalfa 2220/2221和2320/2321/2358系列则分别具有稍快的打印速率。这些信息对于识别设备性能差异和优化工作流程非常有用。 总体而言,这份维修手册是京瓷TASKalfa系列设备维修保养的重要参考资料,不仅提供了详细的操作指导,还强调了安全性和合规性,对于授权的维修工程师来说是不可或缺的工具。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】入侵检测系统简介

![【进阶】入侵检测系统简介](http://www.csreviews.cn/wp-content/uploads/2020/04/ce5d97858653b8f239734eb28ae43f8.png) # 1. 入侵检测系统概述** 入侵检测系统(IDS)是一种网络安全工具,用于检测和预防未经授权的访问、滥用、异常或违反安全策略的行为。IDS通过监控网络流量、系统日志和系统活动来识别潜在的威胁,并向管理员发出警报。 IDS可以分为两大类:基于网络的IDS(NIDS)和基于主机的IDS(HIDS)。NIDS监控网络流量,而HIDS监控单个主机的活动。IDS通常使用签名检测、异常检测和行
recommend-type

轨道障碍物智能识别系统开发

轨道障碍物智能识别系统是一种结合了计算机视觉、人工智能和机器学习技术的系统,主要用于监控和管理铁路、航空或航天器的运行安全。它的主要任务是实时检测和分析轨道上的潜在障碍物,如行人、车辆、物体碎片等,以防止这些障碍物对飞行或行驶路径造成威胁。 开发这样的系统主要包括以下几个步骤: 1. **数据收集**:使用高分辨率摄像头、雷达或激光雷达等设备获取轨道周围的实时视频或数据。 2. **图像处理**:对收集到的图像进行预处理,包括去噪、增强和分割,以便更好地提取有用信息。 3. **特征提取**:利用深度学习模型(如卷积神经网络)提取障碍物的特征,如形状、颜色和运动模式。 4. **目标
recommend-type

小波变换在视频压缩中的应用

"多媒体通信技术视频信息压缩与处理(共17张PPT).pptx" 多媒体通信技术涉及的关键领域之一是视频信息压缩与处理,这在现代数字化社会中至关重要,尤其是在传输和存储大量视频数据时。本资料通过17张PPT详细介绍了这一主题,特别是聚焦于小波变换编码和分形编码两种新型的图像压缩技术。 4.5.1 小波变换编码是针对宽带图像数据压缩的一种高效方法。与离散余弦变换(DCT)相比,小波变换能够更好地适应具有复杂结构和高频细节的图像。DCT对于窄带图像信号效果良好,其变换系数主要集中在低频部分,但对于宽带图像,DCT的系数矩阵中的非零系数分布较广,压缩效率相对较低。小波变换则允许在频率上自由伸缩,能够更精确地捕捉图像的局部特征,因此在压缩宽带图像时表现出更高的效率。 小波变换与傅里叶变换有本质的区别。傅里叶变换依赖于一组固定频率的正弦波来表示信号,而小波分析则是通过母小波的不同移位和缩放来表示信号,这种方法对非平稳和局部特征的信号描述更为精确。小波变换的优势在于同时提供了时间和频率域的局部信息,而傅里叶变换只提供频率域信息,却丢失了时间信息的局部化。 在实际应用中,小波变换常常采用八带分解等子带编码方法,将低频部分细化,高频部分则根据需要进行不同程度的分解,以此达到理想的压缩效果。通过改变小波的平移和缩放,可以获取不同分辨率的图像,从而实现按需的图像质量与压缩率的平衡。 4.5.2 分形编码是另一种有效的图像压缩技术,特别适用于处理不规则和自相似的图像特征。分形理论源自自然界的复杂形态,如山脉、云彩和生物组织,它们在不同尺度上表现出相似的结构。通过分形编码,可以将这些复杂的形状和纹理用较少的数据来表示,从而实现高压缩比。分形编码利用了图像中的分形特性,将其转化为分形块,然后进行编码,这在处理具有丰富细节和不规则边缘的图像时尤其有效。 小波变换和分形编码都是多媒体通信技术中视频信息压缩的重要手段,它们分别以不同的方式处理图像数据,旨在减少存储和传输的需求,同时保持图像的质量。这两种技术在现代图像处理、视频编码标准(如JPEG2000)中都有广泛应用。