Cypher查询语句中,p=(:dwd_hive_blood_di_upper{id:'${id}'}) 和 (p:dwd_hive_blood_di_upper{id:'${id}'}) 写法的区别
时间: 2024-04-02 19:31:59 浏览: 54
在Cypher查询语句中,p=(:dwd_hive_blood_di_upper{id:'${id}'})和(p:dwd_hive_blood_di_upper{id:'${id}'})的写法有所不同:
- p=(:dwd_hive_blood_di_upper{id:'${id}'})是一个模式匹配,表示将匹配到的节点/关系赋值给变量p。这里的模式是一个简单的节点,它不需要有标签,但必须有一个id属性等于${id}的节点才能匹配成功。如果匹配成功,变量p将成为一个节点,节点的属性可以通过p.id、p.name等方式访问。
- (p:dwd_hive_blood_di_upper{id:'${id}'})是一个节点变量声明,表示声明一个节点变量p,并将其绑定到一个具有标签dwd_hive_blood_di_upper和id属性等于${id}的节点。这里的p是一个节点变量,它可以在查询中用于引用这个节点,例如p.name、p.age等。
因此,两种写法的主要区别在于是否需要将匹配到的节点赋值给一个变量,并且在使用变量时的方式略有不同。
相关问题
match p=(:dwd_hive_blood_di_upper{id:'${id}'})-[:table2table*1..${dowm}]->(result:dwd_hive_blood_di_upper) return nodes(p) as node
这是一个Cypher查询语句,用于在Neo4j图数据库中查询从一个指定节点(:dwd_hive_blood_di_upper{id:'${id}'})出发,沿着任意数量的table2table关系(1到${down}个)到达的所有节点,并将这些节点作为结果返回。其中${id}和${down}是查询参数,需要在查询时提供具体的值。返回的结果中,每个节点都被表示为一个单独的行,其中包含了节点的所有属性。
import networkx as nx from neo4j import GraphDatabase from torch_geometric.data import Data # Connect to Neo4j database driver = GraphDatabase.driver(uri, auth=(username, password)) # Define a Cypher query to retrieve nodes and relationships from Neo4j query = """ MATCH (n)-[r]->(m) RETURN id(n) AS source, id(m) AS target, type(r) AS edge_type, labels(n) AS source_labels, labels(m) AS target_labels, properties(n) AS source_props, properties(m) AS target_props """ # Execute the query and retrieve the results with driver.session() as session: results = session.run(query) # Convert the query results to a NetworkX graph graph = nx.MultiDiGraph() for record in results: graph.add_edge(record['source'], record['target'], key=record['edge_type'], source_labels=record['source_labels'], target_labels=record['target_labels'], source_props=record['source_props'], target_props=record['target_props']) # Convert the NetworkX graph to a PyTorch Geometric Data object x = [] edge_index = [] edge_attr = [] for node in graph.nodes(): node_attrs = [] for label in graph.nodes[node]['labels']: node_attrs.append(label) for prop in graph.nodes[node]['source_props']: node_attrs.append(prop) x.append(node_attrs) for source, target, data in graph.edges(keys=True, data=True): edge_index.append([source, target]) edge_attrs = [] for label in data['source_labels']: edge_attrs.append(label) for prop in data['properties']: edge_attrs.append(prop) edge_attr.append(edge_attrs) data = Data(x=torch.tensor(x), edge_index=torch.tensor(edge_index).t().contiguous(), edge_attr=torch.tensor(edge_attr))详细注释
这段代码的作用是从一个Neo4j数据库中检索节点和关系,将它们转化为一个PyTorch Geometric Data对象。以下是代码的详细注释:
```python
# 导入所需的包
import networkx as nx
from neo4j import GraphDatabase
from torch_geometric.data import Data
# 连接到Neo4j数据库
driver = GraphDatabase.driver(uri, auth=(username, password))
# 定义一个Cypher查询语句,用于从Neo4j数据库中检索节点和关系。
query = """
MATCH (n)-[r]->(m)
RETURN id(n) AS source, id(m) AS target, type(r) AS edge_type,
labels(n) AS source_labels, labels(m) AS target_labels,
properties(n) AS source_props, properties(m) AS target_props
"""
# 执行查询并检索结果
with driver.session() as session:
results = session.run(query)
# 将查询结果转化为一个NetworkX图
graph = nx.MultiDiGraph()
for record in results:
graph.add_edge(record['source'], record['target'], key=record['edge_type'],
source_labels=record['source_labels'], target_labels=record['target_labels'],
source_props=record['source_props'], target_props=record['target_props'])
# 将NetworkX图转化为一个PyTorch Geometric Data对象
x = []
edge_index = []
edge_attr = []
# 遍历图中的每个节点,将节点的属性存储在x列表中
for node in graph.nodes():
node_attrs = []
for label in graph.nodes[node]['labels']:
node_attrs.append(label)
for prop in graph.nodes[node]['source_props']:
node_attrs.append(prop)
x.append(node_attrs)
# 遍历图中的每条边,将边的属性存储在edge_index和edge_attr列表中
for source, target, data in graph.edges(keys=True, data=True):
edge_index.append([source, target])
edge_attrs = []
for label in data['source_labels']:
edge_attrs.append(label)
for prop in data['properties']:
edge_attrs.append(prop)
edge_attr.append(edge_attrs)
# 创建一个PyTorch Geometric Data对象
data = Data(x=torch.tensor(x), edge_index=torch.tensor(edge_index).t().contiguous(),
edge_attr=torch.tensor(edge_attr))
```
这段代码的主要步骤包括:
1. 首先,连接到一个Neo4j数据库。
2. 然后,定义一个Cypher查询语句来检索节点和关系。
3. 执行查询,并将结果转化为一个NetworkX图。
4. 遍历图中的每个节点,将节点的属性存储在x列表中。
5. 遍历图中的每条边,将边的属性存储在edge_index和edge_attr列表中。
6. 最后,创建一个PyTorch Geometric Data对象,其中包含节点属性x、边属性edge_attr和边索引edge_index。
这段代码的目的是将一个Neo4j图转化为一个PyTorch Geometric Data对象,以便进行图神经网络的训练和推理。
阅读全文