class Txt2ImgIterableBaseDataset(IterableDataset): ''' Define an interface to make the IterableDatasets for text2img data chainable ''' def __init__(self, num_records=0, valid_ids=None, size=256): super().__init__() self.num_records = num_records self.valid_ids = valid_ids self.sample_ids = valid_ids self.size = size print(f'{self.__class__.__name__} dataset contains {self.__len__()} examples.') def __len__(self): return self.num_records @abstractmethod def __iter__(self): pass解析
时间: 2024-02-16 14:15:44 浏览: 280
这是一个基于 PyTorch 的自定义数据集类 `Txt2ImgIterableBaseDataset`,继承自 `IterableDataset`。在实现自定义数据集时,通常需要重写 `__len__` 和 `__getitem__` 两个方法,但是对于大型数据集来说,使用 `IterableDataset` 可以提高数据加载的效率和速度。`Txt2ImgIterableBaseDataset` 类定义了一个接口,使得数据集对象可以通过链式调用的方式进行转换和处理。该类的构造函数中,`num_records` 表示数据集中的样本数量,`valid_ids` 表示可用的样本 id 列表,`size` 表示图像大小。`__len__` 方法返回数据集中的样本数量,`__iter__` 方法是一个抽象方法,需要在子类中实现。该类的主要作用是提供一个接口,使得数据集可以被链式处理和转换,便于数据处理和模型训练。
阅读全文