soft q -learning代码
时间: 2024-11-06 12:24:35 浏览: 14
Soft Q-learning是一种基于强化学习的算法,它结合了Q-learning的离线更新策略和softmax函数,用于解决连续动作空间的问题。这种算法通常用于有状态的马尔科夫决策过程(MDP)中,它能帮助智能体在不确定性和高维度环境中做出决策。
下面是一个简单的Soft Q-learning伪代码示例:
```python
import numpy as np
# 初始化
state_dim = ... # 状态维度
action_dim = ... # 动作维度
alpha = ... # 学习率
beta = ... # 软max温度参数
q_table = np.zeros((state_dim, action_dim))
epsilon = ... # 探索率
def choose_action(state):
if np.random.uniform() < epsilon:
return np.random.choice(action_dim)
else:
return np.argmax(q_table[state])
def update_q_table(old_state, action, reward, new_state):
max_future_q = np.max(q_table[new_state])
current_q = q_table[old_state][action]
# Softmax exploration
prob = np.exp(current_q / beta) / np.sum(np.exp(q_table[old_state] / beta))
next_prob = np.exp(max_future_q / beta) / np.sum(np.exp(q_table[new_state] / beta))
# Update using TD(0) with Boltzmann exploration
q_table[old_state][action] += alpha * (reward + gamma * np.log(prob) - current_q)
# 主循环
for episode in range(num_episodes):
state = env.reset()
done = False
while not done:
action = choose_action(state)
new_state, reward, done, _ = env.step(action)
update_q_table(state, action, reward, new_state)
state = new_state
```
注意:这个代码只是一个简化版本,实际应用可能需要更复杂的环境交互、存储历史经验、折扣因子(gamma)等元素,并且通常会集成到深度学习框架如TensorFlow或PyTorch中处理大规模数据。
阅读全文