torch.arange(B, dtype=torch.long, device=x.device)
时间: 2024-04-28 20:25:49 浏览: 165
这段代码生成一个长度为B的一维张量,包含从0到B-1的整数。dtype=torch.long表示数据类型为64位整数,device=x.device表示将张量放在与输入张量x相同的设备上。
view(B, 1)的作用是将这个一维张量重塑为形状为(B, 1)的二维张量,其中第一维有B行,第二维有1列。
* N的作用是将这个二维张量中的每个元素乘以N,得到一个形状为(B, 1)的二维张量,其中第一维有B行,第二维有1列。这个张量通常被用作计算语境向量中各个位置的偏置量,以便对每个位置的词向量进行加权求和。
相关问题
if self.num_pos_feats_x != 0 and self.num_pos_feats_y != 0: y_embed = torch.arange(h, dtype=torch.float32, device=x.device).unsqueeze(1).repeat(b, 1, w) x_embed = torch.arange(w, dtype=torch.float32, device=x.device).repeat(b, h, 1) z_embed = depth.squeeze().to(dtype=torch.float32, device=x.device)
这段代码是深度学习中的PyTorch代码,它用于生成图像的位置编码(Positional Encoding)。其中,输入x是一个大小为[b, c, h, w]的四维张量,表示一个批次中的多个图像,其中b表示批次大小,c表示通道数,h和w分别表示图像的高和宽。depth是一个大小为[b, h, w]的三维张量,表示每个像素点的深度值。
这段代码首先判断图像的高和宽是否为0,如果不为0,则生成y_embed和x_embed两个三维张量。其中,y_embed的形状为[b, h, w],表示每个像素点在y轴上的位置编码;x_embed的形状为[b, h, w],表示每个像素点在x轴上的位置编码。这里使用了PyTorch中的arange函数和repeat函数来生成位置编码。
接着,代码将depth三维张量压缩成二维张量,并转换成float32类型,并赋值给z_embed。最后返回x、y和z三个位置编码的张量。这些位置编码可以用于卷积神经网络中的自注意力机制(Self-Attention)中,帮助模型学习到图像的位置信息。
def random_subsample(pcd, n_points=2048): """ Args: pcd: (B, N, 3) returns: new_pcd: (B, n_points, 3) """ b, n, _ = pcd.shape device = pcd.device batch_idx = torch.arange(b, dtype=torch.long, device=device).reshape((-1, 1)).repeat(1, n_points) idx = torch.cat([torch.randperm(n, dtype=torch.long, device=device)[:n_points].reshape((1, -1)) for i in range(b)], 0) return pcd[batch_idx, idx, :]请说一下这段代码进行采样的采样规则是什么?
这段代码是使用随机采样的方式对输入的点云进行采样,采样的规则如下:
1. 首先,确定输入点云的形状和大小,其中`pcd`是一个形状为 `(B, N, 3)` 的张量,表示 B 组点云数据,每组包含 N 个点,每个点由三个坐标值组成。
2. 然后,确定要采样的点的数量 `n_points`,默认值为 2048。
3. 接下来,根据每组点云的数量 N,生成一个形状为 `(B, n_points)` 的张量 `batch_idx`,其中每个元素的值都是对应组别的索引值。
4. 为了进行随机采样,对于每组点云,使用 `torch.randperm` 函数生成一个随机排列的索引张量 `idx`,其中值的范围为 0 到 N-1,并且生成的索引数量为 `n_points`。
5. 最后,使用 `batch_idx` 和 `idx` 对输入点云张量 `pcd` 进行索引,提取出对应位置的采样点。返回的张量 `new_pcd` 的形状为 `(B, n_points, 3)`,表示采样后的点云数据。
综上所述,这段代码通过在每组点云中随机选择指定数量的点来进行采样,并返回采样后的点云数据。采样的结果是随机的,每次运行代码都可能得到不同的采样结果。
阅读全文