A = torch.arange(20,dtyple = torch.float32).reshape(5,4) B = A.clone() A , A + B
时间: 2024-05-03 16:19:11 浏览: 243
运行这段代码会报错,因为 `dtyple` 应该是 `dtype` 的拼写错误。如果将其修正过来,代码应该如下所示:
```python
import torch
A = torch.arange(20, dtype=torch.float32).reshape(5, 4)
B = A.clone()
print(A)
print(A + B)
```
输出结果如下:
```
tensor([[ 0., 1., 2., 3.],
[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.],
[12., 13., 14., 15.],
[16., 17., 18., 19.]])
tensor([[ 0., 2., 4., 6.],
[ 8., 10., 12., 14.],
[16., 18., 20., 22.],
[24., 26., 28., 30.],
[32., 34., 36., 38.]])
```
其中,`A` 和 `B` 分别是两个形状为 `(5, 4)` 的张量,`A` 的值为从 0 到 19 的浮点数,`B` 的值和 `A` 相同。`A + B` 表示对两个张量进行按元素相加的操作。由于两个张量的值相同,因此相加的结果也与 `A` 相同。
相关问题
dct = torch.fft.dct(torch.eye(256), norm='ortho') AttributeError: module 'torch.fft' has no attribute 'dct'
非常抱歉,我之前提供的代码存在错误。在 PyTorch 中,并没有直接提供离散余弦变换(DCT)的函数。对于 DCT 的实现,你可以使用 `torch.rfft` 函数结合 DCT 系数矩阵来进行计算。
下面是一个修正后的示例代码:
```python
import torch
import torch.nn as nn
import torch.optim as optim
# 定义离散余弦变换(DCT)系数矩阵
dct_matrix = torch.zeros(256, 256)
for i in range(256):
for j in range(256):
dct_matrix[i, j] = torch.cos((2 * i + 1) * j * 3.14159 / (2 * 256))
# 定义 OMP 算法
def omp(A, y, k):
m, n = A.shape
x = torch.zeros(n, 1)
residual = y.clone()
support = []
for _ in range(k):
projections = torch.abs(A.t().matmul(residual))
index = torch.argmax(projections)
support.append(index)
AtA_inv = torch.linalg.inv(A[:, support].t().matmul(A[:, support]))
x_new = AtA_inv.matmul(A[:, support].t()).matmul(y)
residual = y - A[:, support].matmul(x_new)
x[support] = x_new
return x
# 加载原始图像
image = torch.randn(256, 256)
# 压缩感知成像
measurement_matrix = torch.fft.fft(torch.eye(256), dim=0).real
compressed = measurement_matrix.matmul(image.flatten().unsqueeze(1))
# 使用 OMP 进行重构
reconstructed = omp(dct_matrix, compressed, k=100)
# 计算重构误差
mse = nn.MSELoss()
reconstruction_error = mse(image, reconstructed.reshape(image.shape))
print("重构误差:", reconstruction_error.item())
```
在这个示例中,我们手动定义了 DCT 系数矩阵 `dct_matrix`,然后使用 `torch.fft.fft` 函数计算测量矩阵,并进行实部提取。接下来的步骤与之前的示例相同。
请注意,这只是一个示例,用于演示如何使用自定义的 DCT 系数矩阵进行压缩感知成像。在实际应用中,你可能需要根据具体的需求进行调整和优化。
class Detect(nn.Module): stride = None # strides computed during build onnx_dynamic = False # ONNX export parameter def init(self, nc=80, anchors=(), ch=(), inplace=True): # detection layer super().init() self.nc = nc # number of classes self.no = nc + 5 # number of outputs per anchor self.nl = len(anchors) # number of detection layers self.na = len(anchors[0]) // 2 # number of anchors self.grid = [torch.zeros(1)] * self.nl # init grid a = torch.tensor(anchors).float().view(self.nl, -1, 2) self.register_buffer('anchors', a) # shape(nl,na,2) self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2) self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv self.inplace = inplace # use in-place ops (e.g. slice assignment) def forward(self, x): z = [] # inference output for i in range(self.nl): x[i] = self.mi # conv bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85) x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous() if not self.training: # inference if self.grid[i].shape[2:4] != x[i].shape[2:4] or self.onnx_dynamic: self.grid[i] = self._make_grid(nx, ny).to(x[i].device) y = x[i].sigmoid() if self.inplace: y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh else: # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953 xy = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i].view(1, self.na, 1, 1, 2) # wh y = torch.cat((xy, wh, y[..., 4:]), -1) z.append(y.view(bs, -1, self.no)) return x if self.training else (torch.cat(z, 1), x) @staticmethod def _make_grid(nx=20, ny=20): yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)]) return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float() 基于YOLOv5详细介绍这个程序
这段程序是YOLOv5中的检测层(Detect)的实现代码。下面对其中的关键部分进行详细介绍:
1. 初始化函数 (init)
在初始化函数中,定义了一些模型的参数,如类别数(nc)、anchor框(anchors)、通道数(ch)等。同时,还初始化了一些变量,如anchor框的数量(na)、输出的维度数(no)等。在该函数中,还注册了一些buffer,如anchors、anchor_grid等,用于存储一些不需要训练的参数。
2. 前向传播函数 (forward)
在前向传播函数中,首先将输入的特征图(x)通过一些卷积层(m)进行处理,得到一些预测结果(y)。然后,将预测结果进行reshape操作,得到(bs,3,ny,nx,85)的形式,其中bs为batch size,3为每个像素点对应的anchor框数量,ny和nx为特征图的大小,85为每个anchor框的预测结果,包括4个坐标值、1个置信度值和80个类别概率值。
接着,根据预测的坐标值和anchor框计算出每个目标的边界框,并根据置信度值和类别概率值进行预测。具体来说,对于每个像素点和每个anchor框,根据预测的中心坐标、宽度和高度,计算出对应的边界框。然后,根据预测的置信度值和类别概率值,对每个边界框进行分类,得到最终的目标检测结果。
在推理过程中,为了适应不同大小的输入图像,检测层还支持动态形状的输入输出。此外,为了提高推理速度,该模型还使用了一些技巧,如in-place操作、buffer注册等。
阅读全文