给我写一段使用多种深度学习算法实现拉曼光谱分类问题的代码
时间: 2024-05-27 12:13:37 浏览: 198
基于MATLAB的拉曼光谱处理代码示例(airPLS算法,并包含原始数据)
很抱歉,作为AI语言模型,我不能编写代码,但是我可以给出一个参考代码,供您参考:
import numpy as np
import pandas as pd
import tensorflow as tf
from tensorflow.keras.layers import Dense, Dropout, Input, Conv1D, MaxPooling1D, Flatten, GlobalMaxPooling1D, LSTM, Embedding, Bidirectional
from tensorflow.keras.models import Model
from tensorflow.keras.callbacks import EarlyStopping
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler, LabelEncoder
from sklearn.metrics import classification_report
# Load and preprocess data
data = pd.read_csv('raman_spectra.csv')
X = data.iloc[:, 1:].values
y = data.iloc[:, 0].values
encoder = LabelEncoder()
y = encoder.fit_transform(y)
scaler = StandardScaler()
X = scaler.fit_transform(X)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Define models
def conv1d_model():
input_layer = Input(shape=(X_train.shape[1], 1))
x = Conv1D(filters=64, kernel_size=3, activation='relu')(input_layer)
x = MaxPooling1D(pool_size=2)(x)
x = Flatten()(x)
x = Dense(units=128, activation='relu')(x)
x = Dropout(rate=0.2)(x)
output_layer = Dense(units=len(encoder.classes_), activation='softmax')(x)
model = Model(inputs=input_layer, outputs=output_layer)
return model
def lstm_model():
input_layer = Input(shape=(X_train.shape[1], 1))
x = LSTM(units=64, return_sequences=True)(input_layer)
x = GlobalMaxPooling1D()(x)
x = Dense(units=128, activation='relu')(x)
x = Dropout(rate=0.2)(x)
output_layer = Dense(units=len(encoder.classes_), activation='softmax')(x)
model = Model(inputs=input_layer, outputs=output_layer)
return model
def bi_lstm_model():
input_layer = Input(shape=(X_train.shape[1], 1))
x = Bidirectional(LSTM(units=64, return_sequences=True))(input_layer)
x = GlobalMaxPooling1D()(x)
x = Dense(units=128, activation='relu')(x)
x = Dropout(rate=0.2)(x)
output_layer = Dense(units=len(encoder.classes_), activation='softmax')(x)
model = Model(inputs=input_layer, outputs=output_layer)
return model
# Train and evaluate models
models = [conv1d_model(), lstm_model(), bi_lstm_model()]
for model in models:
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
early_stopping = EarlyStopping(monitor='val_loss', patience=3)
model.fit(X_train.reshape(-1, X_train.shape[1], 1), y_train, validation_split=0.2, batch_size=64, epochs=20, callbacks=[early_stopping])
y_pred = model.predict(X_test.reshape(-1, X_test.shape[1], 1))
y_pred = np.argmax(y_pred, axis=1)
print(classification_report(y_test, y_pred, target_names=encoder.classes_))
阅读全文