adam优化器优化了哪些参数
时间: 2023-11-09 17:46:28 浏览: 81
adamw和adam 优化器相关讲解.docx
Adam优化器主要用于优化神经网络模型中的权重参数。它通过自适应地调整学习率和动量参数来加速模型的收敛。Adam优化器在梯度下降的基础上引入了自适应矩估计来调整学习率,可以同时考虑一阶矩估计和二阶矩估计。
具体而言,Adam优化器会优化以下参数:
1. 权重参数(Weight Parameters):神经网络模型中的权重参数,例如连接权重、偏置项等。
2. 学习率(Learning Rate):Adam优化器会自适应地调整学习率,以便在训练过程中更好地收敛。
3. 动量参数(Momentum Parameters):Adam优化器通过引入动量参数,可以在更新权重时考虑之前的梯度信息,从而加速收敛。
总之,Adam优化器主要用于优化神经网络模型中的权重参数,并通过自适应地调整学习率和动量参数来提高模型的收敛速度和效果。
阅读全文