Rating = pd.read_csv('data/BX-Book-Ratings.csv', sep=None, error_bad_lines=False) Rating=Rating[:10000]
时间: 2024-03-04 16:48:23 浏览: 143
这段代码的作用是读取名为"BX-Book-Ratings.csv"的文件,该文件包含图书评分数据,并将其存储在名为"Rating"的Pandas DataFrame对象中。另外,这段代码还通过将"sep=None"和"error_bad_lines=False"传递给read_csv()函数来处理文件中的异常值和分隔符。最后,这段代码还将"Rating"对象的前10000行存储在同一个对象中。
相关问题
解释这段代码:import os.path as osp import pandas as pd import torch from sentence_transformers import SentenceTransformer from torch_geometric.data import HeteroData, download_url, extract_zip from torch_geometric.transforms import RandomLinkSplit, ToUndirected url = 'https://files.grouplens.org/datasets/movielens/ml-latest-small.zip' root = osp.join(osp.dirname(osp.realpath(__file__)), '../../data/MovieLens') extract_zip(download_url(url, root), root) movie_path = osp.join(root, 'ml-latest-small', 'movies.csv') rating_path = osp.join(root, 'ml-latest-small', 'ratings.csv') def load_node_csv(path, index_col, encoders=None, **kwargs): df = pd.read_csv(path, index_col=index_col, **kwargs) mapping = {index: i for i, index in enumerate(df.index.unique())} x = None if encoders is not None: xs = [encoder(df[col]) for col, encoder in encoders.items()] x = torch.cat(xs, dim=-1) return x, mapping def load_edge_csv(path, src_index_col, src_mapping, dst_index_col, dst_mapping, encoders=None, **kwargs): df = pd.read_csv(path, **kwargs) src = [src_mapping[index] for index in df[src_index_col]] dst = [dst_mapping[index] for index in df[dst_index_col]] edge_index = torch.tensor([src, dst]) edge_attr = None if encoders is not None: edge_attrs = [encoder(df[col]) for col, encoder in encoders.items()] edge_attr = torch.cat(edge_attrs, dim=-1) return edge_index, edge_attr class SequenceEncoder(object): # The 'SequenceEncoder' encodes raw column strings into embeddings. def __init__(self, model_name='all-MiniLM-L6-v2', device=None): self.device = device self.model = SentenceTransformer(model_name, device=device) @torch.no_grad() def __call__(self, df): x = self.model.encode(df.values, show_progress_bar=True, convert_to_tensor=True, device=self.device) return x.cpu() class GenresEncoder(object)
这段代码是一个Python脚本,主要用于加载MovieLens数据集中的电影和评分数据,并将其转换为图形数据,以便进行图形嵌入。其中,使用了以下库:
- os.path:用于处理文件路径的库。
- pandas:用于处理数据的库。
- torch:用于深度学习的库。
- sentence_transformers:用于生成句子嵌入的库。
- torch_geometric:用于处理图形数据的库。
首先,定义了一个URL和根目录,用于下载和存储MovieLens数据集。然后,定义了两个函数load_node_csv和load_edge_csv,用于加载节点和边的CSV文件,并将它们转换为PyTorch张量。最后,定义了一个名为SequenceEncoder的类,用于将序列数据转换为嵌入向量。
# 读取评分数据文件 ratings = pd.read_csv("E:\\Recommender-System\\!Final\\ml-100k\\u.data", sep="\t", names=["user_id", "movie_id", "rating", "timestamp"]) # print(ratings) # 创建用户-电影评分矩阵 user_movie_matrix = pd.pivot_table(ratings, index="user_id", columns="movie_id", values="rating") print(user_movie_matrix.user_id) AttributeError: 'DataFrame' object has no attribute 'user_id'
根据您提供的代码,`user_movie_matrix`是一个以电影ID为列索引,以用户ID为行索引的DataFrame对象,因此无法访问`user_id`属性。如果您想访问行索引,可以使用`index`属性,例如:
```python
import pandas as pd
# 读取评分数据文件
ratings = pd.read_csv("E:\\Recommender-System\\!Final\\ml-100k\\u.data", sep="\t", names=["user_id", "movie_id", "rating", "timestamp"])
# 创建用户-电影评分矩阵
user_movie_matrix = pd.pivot_table(ratings, index="user_id", columns="movie_id", values="rating")
# 访问行索引
print(user_movie_matrix.index)
```
上述代码中,`user_movie_matrix.index`将返回用户ID的行索引。如果您要访问列索引,可以使用`columns`属性,例如:
```python
import pandas as pd
# 读取评分数据文件
ratings = pd.read_csv("E:\\Recommender-System\\!Final\\ml-100k\\u.data", sep="\t", names=["user_id", "movie_id", "rating", "timestamp"])
# 创建用户-电影评分矩阵
user_movie_matrix = pd.pivot_table(ratings, index="user_id", columns="movie_id", values="rating")
# 访问列索引
print(user_movie_matrix.columns)
```
上述代码中,`user_movie_matrix.columns`将返回电影ID的列索引。
阅读全文