python pandas常用函数及其用法
时间: 2023-06-15 09:04:38 浏览: 135
Pandas 是一个开源数据处理和分析工具,提供了一系列的数据结构和数据分析函数。下面是一些常用的 Pandas 函数及其用法:
1. DataFrame()
用于创建一个数据框。例如,可以使用以下代码创建一个名为 df 的数据框:
```
import pandas as pd
df = pd.DataFrame(data, columns=['col1', 'col2', 'col3'])
```
2. read_csv()
用于读取 CSV 文件。例如,可以使用以下代码将名为 'data.csv' 的 CSV 文件读入一个名为 df 的数据框中:
```
df = pd.read_csv('data.csv')
```
3. head()
用于查看数据框的前几行。例如,可以使用以下代码查看数据框 df 的前五行:
```
df.head()
```
4. tail()
用于查看数据框的后几行。例如,可以使用以下代码查看数据框 df 的后五行:
```
df.tail()
```
5. describe()
用于计算数据框中数值列的一些统计信息,如均值、标准差、最小值、最大值等。例如,可以使用以下代码查看数据框 df 中数值列的统计信息:
```
df.describe()
```
6. groupby()
用于按照某列或某些列进行分组。例如,可以使用以下代码按照 'col1' 列进行分组:
```
df.groupby('col1')
```
7. merge()
用于合并数据框。例如,可以使用以下代码将两个数据框 df1 和 df2 按照 'col1' 列合并:
```
pd.merge(df1, df2, on='col1')
```
8. drop()
用于删除数据框中的某行或某列。例如,可以使用以下代码删除数据框 df 中名为 'col1' 的列:
```
df.drop('col1', axis=1)
```
9. fillna()
用于填充数据框中的缺失值。例如,可以使用以下代码将数据框 df 中的缺失值填充为 0:
```
df.fillna(0)
```
10. sort_values()
用于按照某列或某些列进行排序。例如,可以使用以下代码按照 'col1' 列进行升序排序:
```
df.sort_values('col1', ascending=True)
```
阅读全文