import java.io.*; import java.util.*; public class WordCount { public static void main(String[] args) throws IOException { // 读取文件内容 FileReader reader = new FileReader("四级常用单词.txt"); BufferedReader br = new BufferedReader(reader); String line; //接收一行 StringBuilder sb = new StringBuilder(); while ((line = br.readLine()) != null) { line.trim(); String[] split = line.split("[^a-zA-Z]"); if (split[0] != null){ sb.append(split[0]); } } String str = sb.toString(); br.close(); reader.close(); // 统计字母出现次数 int temp; int [] letters=new int[26] ; String words = str.toLowerCase(); for (int i = 0; i < words.length(); i++) { char c = words.charAt(i); letters[c - 'a'] ++; } // 按照字母出现频率排序 TreeMap<Integer,Character> treeMap= new TreeMap<>(); for (int i = 0; i < 26; i++) { treeMap.put(letters[i],(char)(i + 'a')); } //进行排序 FileWriter fw = new FileWriter("result.txt"); Set keyset = treeMap.keySet(); Iterator it = keyset.iterator(); for (int j = 0;it.hasNext();j++){ Object value = it.next(); String result = treeMap.get(value) +":" +value+"\n"; fw.write((result)); } fw.close(); }}
时间: 2024-01-22 11:02:07 浏览: 153
这段代码是用来统计一个文本文件中所有单词中每个字母出现的次数,并按字母出现的次数进行排序输出另一个文件中。具体流程如下:
1. 使用FileReader和BufferedReader读取文件内容,每次读取一行,将行首的空白字符去掉,使用正则表达式"[^a-zA-Z]"将每行文本按照非字母字符分割成多个单词,只取第一个单词加入StringBuilder中。
2. 将StringBuilder中的单词转成小写字母,使用一个长度为26的数组letters来统计每个字母出现的次数。
3. 将letters数组中每个元素的值和对应的字母一起存入一个TreeMap中,TreeMap会按照元素值进行排序。
4. 遍历TreeMap,将结果输出到另一个文件中。
相关问题
package wc; import java.io.IOException; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.util.GenericOptionsParser; public class WordCountMain { public static void main(String[] args) throws Exception{ // TODO Auto-generated method stub Configuration conf = new Configuration(); conf.set("fs.default.name","hdfs://localhost:9000"); String[] otherArgs = new String[]{"input","output"}; /* 直接设置输入参数 */ if (otherArgs.length != 2) { System.err.println("Usage: wordcount <in><out>"); System.exit(2); } Job job = Job.getInstance(conf,"Merge and duplicate removal"); job.setJarByClass(WordCountMapper.class); job.setMapperClass(Map.class); job.setCombinerClass(WordCountReduce.class); job.setReducerClass(WordCountReduce.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(Text.class); FileInputFormat.addInputPath(job, new Path(otherArgs[0])); FileOutputFormat.setOutputPath(job, new Path(otherArgs[1])); System.exit(job.waitForCompletion(true) ? 0 : 1); } } package wc; import java.io.IOException; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.io.Text; public class WordCountMapper{ public static class Map extends Mapper<Object, Text, Text, Text>{ private static Text text = new Text(); public void map(Object key, Text value, Context context) throws IOException,InterruptedException{ text = value; context.write(text, new Text("")); } } } job.setmapperclass出错
在您的代码中,您定义了一个名为 WordCountMapper 的类,该类实际上应该是一个 Mapper 类,并且应该继承 Mapper 接口。但是,在您的代码中,WordCountMapper 类没有继承 Mapper 接口,因此在设置 Mapper 类时出现了错误。
您需要将 WordCountMapper 类修改为一个 Mapper 类,并且让它继承 Mapper 接口,如下所示:
```
package wc;
import java.io.IOException;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.io.Text;
public class WordCountMapper extends Mapper<Object, Text, Text, Text> {
private static Text text = new Text();
public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
text = value;
context.write(text, new Text(""));
}
}
```
然后,您需要将 `job.setMapperClass(Map.class)` 修改为 `job.setMapperClass(WordCountMapper.class)`,以设置正确的 Mapper 类。
帮我解释下面的代码:import java.io.IOException; import java.util.StringTokenizer; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.util.GenericOptionsParser; public class WordCount { public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable>{ private final static IntWritable one = new IntWritable(1); private Text word = new Text(); public void map(Object key, Text value, Context context ) throws IOException, InterruptedException { StringTokenizer itr = new StringTokenizer(value.toString()); while (itr.hasMoreTokens()) { word.set(itr.nextToken()); context.write(word, one); } } } public static class IntSumReducer extends Reducer<Text,IntWritable,Text,IntWritable> { private IntWritable result = new IntWritable(); public void reduce(Text key, Iterable<IntWritable> values, Context context ) throws IOException, InterruptedException { int sum = 0; for (IntWritable val : values) { sum += val.get(); } result.set(sum); context.write(key, result); } } public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs(); if (otherArgs.length != 2) { System.err.println("Usage: wordcount <in> <out>"); System.exit(2); } Job job = new Job(conf, "word count"); job.setJarByClass(WordCount.class); job.setMapperClass(TokenizerMapper.class); job.setCombinerClass(IntSumReducer.class); job.setReducerClass(IntSumReducer.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); FileInputFormat.addInputPath(job, new Path(otherArgs[0])); FileOutputFormat.setOutputPath(job, new Path(otherArgs[1])); System.exit(job.waitForCompletion(true) ? 0 : 1); } }
这段代码是一个 Hadoop MapReduce 的 WordCount(词频统计)程序,主要包括以下几个部分:
1. 引入需要用到的类库:
```
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
```
2. 定义 Mapper 类:
```
public static class TokenizerMapper
extends Mapper<Object, Text, Text, IntWritable>{
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(Object key, Text value, Context context)
throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
}
}
}
```
Mapper 类主要是将输入的文本分割成单词,然后对每个单词输出一个键值对,其中键为单词,值为 1。
3. 定义 Reducer 类:
```
public static class IntSumReducer
extends Reducer<Text,IntWritable,Text,IntWritable> {
private IntWritable result = new IntWritable();
public void reduce(Text key, Iterable<IntWritable> values,
Context context) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}
```
Reducer 类主要是将 Mapper 输出的键值对按照键进行分组,然后对每组键值进行统计,输出每个单词出现的次数。
4. 定义主函数:
```
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
if (otherArgs.length != 2) {
System.err.println("Usage: wordcount <in> <out>");
System.exit(2);
}
Job job = new Job(conf, "word count");
job.setJarByClass(WordCount.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
```
主函数主要是设置 MapReduce 作业的相关参数,包括输入路径、输出路径、Mapper 类、Reducer 类、输出键值对类型等。最后调用 `waitForCompletion` 函数提交作业并等待作业完成。
阅读全文