Mapreduce实例——WordCount
时间: 2023-11-22 16:06:04 浏览: 101
MapReduce经典例子WordCount运行详解.pdf
Mapreduce实例-WordCount是一个经典的MapReduce程序,用于统计文本中每个单词出现的次数。它的工作原理是将输入的文本划分为多个片段,每个片段由多个键值对组成,其中键是单词,值是1。然后通过Map阶段将每个片段中的单词提取出来,并将每个单词映射为键值对,其中键是单词,值是1。接下来,通过Shuffle和Sort阶段将具有相同单词的键值对聚集在一起。最后,通过Reduce阶段将相同单词的计数值进行累加,得到每个单词的总次数。
以下是一个示例代码片段,展示了WordCount程序的基本结构和关键组件:
```java
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class WordCount {
public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable>{
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
}
}
}
public static class IntSumReducer extends Reducer<Text,IntWritable,Text,IntWritable> {
private IntWritable result = new IntWritable();
public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}
public static void main(String[] args) throws Exception {
Job job = Job.getInstance();
job.setJarByClass(WordCount.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class); job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
```
阅读全文