frameOpencv = frame.copy() frameHeight = frameOpencvDnn.shape[0] frameOpencvDnn.shape[1] Blob = cv2.dnn.blobFromImage(frameOpencvDnn,1.0,(300,300),[104,117,123],True,False) Net.setInput(blob) Detections = net.forward() Bboxes =[]
时间: 2024-04-27 10:21:14 浏览: 117
这是一个使用OpenCV和DNN模块进行目标检测的代码段。该代码段首先将输入帧复制到一个新变量中,然后获取输入帧的高度和宽度。接下来,使用cv2.dnn.blobFromImage()函数将输入帧转换为网络所需的格式,并设置均值数值和比例因子。然后,调用网络的setInput()函数设置输入数据,对输入数据进行前向传递,并获取检测结果。最后,检测结果被存储在一个列表中。
相关问题
def detectFaceOpenCVDnn(net, frame): blob = cv2.dnn.blobFromImage(frame, 1.0, (300, 300), [104, 117, 123], False, False) frameHeight = frame.shape[0] frameWidth = frame.shape[1] net.setInput(blob) detections = net.forward() for i in range(detections.shape[2]): 请用中文翻译这段代码
这段代码使用OpenCV的深度神经网络(DNN)模块对输入帧进行人脸检测。函数`detectFaceOpenCVDnn`接受一个预训练的神经网络(`net`)和一个输入帧(`frame`)作为输入。
输入帧首先通过`cv2.dnn.blobFromImage`函数进行预处理,将其转换为一个4维的blob。然后,使用`net.setInput(blob)`将此blob输入神经网络。
神经网络的输出(`detections`)是一个4维张量,包含输入帧中所有对象的检测结果。for循环遍历所有检测结果,并逐个处理它们。
代码中省略了每个检测结果的具体处理方法。但通常这将涉及检查检测的置信度分数,并过滤掉得分低的检测结果。函数的最终输出将是输入帧中检测到的人脸列表。
def detectFaceOpenCVDnn(net, frame): blob = cv2.dnn.blobFromImage(frame, 1.0, (300, 300), [104, 117, 123], False, False) frameHeight = frame.shape[0] frameWidth = frame.shape[1] net.setInput(blob) detections = net.forward() for i in range(detections.shape[2]): confidence = detections[0, 0, i, 2] if confidence > conf_threshold: x1 = int(detections[0, 0, i, 3] * frameWidth) y1 = int(detections[0, 0, i, 4] * frameHeight) x2 = int(detections[0, 0, i, 5] * frameWidth) y2 = int(detections[0, 0, i, 6] * frameHeight) ROI = frame[y1:y2, x1:x2].copy() hsv_img = cv2.cvtColor(ROI, cv2.COLOR_BGR2HSV) lower_hsv_1 = np.array([0, 30, 30]) # 颜色范围低阈值 upper_hsv_1 = np.array([40, 255, 255]) # 颜色范围高阈值 lower_hsv_2 = np.array([140, 30, 30]) # 颜色范围低阈值 upper_hsv_2 = np.array([180, 255, 255]) # 颜色范围高阈值 mask1 = cv2.inRange(hsv_img, lower_hsv_1, upper_hsv_1) mask2 = cv2.inRange(hsv_img, lower_hsv_2, upper_hsv_2) mask = mask1 + mask2 mask = cv2.blur(mask, (3, 3)) # print(len(mask[mask == 255])) # print(len(mask[mask == 0])) return (len(mask[mask == 255])) / (len(mask[mask == 255]) + len(mask[mask == 0])) return 0
这是一个使用 OpenCV 和深度学习模型进行人脸检测并计算人脸面积的函数。具体来说,它使用 OpenCV 中的 dnn 模块加载一个预训练的神经网络模型,并对输入的图像进行前向传递以得到人脸检测结果。然后,它循环遍历这些检测结果,并根据置信度阈值筛选出置信度高的检测结果。对于每个被筛选出的检测结果,它将其对应的人脸区域提取出来,并将其转换为 HSV 颜色空间。然后,它根据预设的颜色范围,使用 cv2.inRange 函数生成对应的颜色掩膜,并将两个掩膜相加。最后,它将掩膜进行模糊处理,并计算人脸区域中颜色为目标颜色的像素占总像素数的比例作为人脸面积。如果没有检测到人脸,则返回 0。
阅读全文