从顺序表中删除重复的元素,最优解的时间复杂度

时间: 2023-05-21 11:06:28 浏览: 62
可以使用哈希表进行优化,时间复杂度为O(n)。具体做法是遍历顺序表,将每个元素作为key存入哈希表中,如果该元素已经存在于哈希表中,就直接在顺序表中删除它。遍历完成后,顺序表中就不会有重复元素了。需要注意的是,这种方法可能会导致原来的元素顺序发生变化。
相关问题

1 用3种方法(递归法,备忘录法,动态规划法)求解钢条切割问题,给出最优值和最优解,并通过实例比较运行时间. 2 随机生成6个矩阵的矩阵链相乘问题,应用动态规划算法进行求解,给出最优值和最优解并分析时间复杂度。使用C++实现

1. 钢条切割问题 钢条切割问题是一个经典的动态规划问题,假设我们有一根长度为n的钢条和一个价格表,表中给出了不同长度的钢条对应的价格。我们需要将这根钢条切割成若干段,使得每段钢条的长度之和等于n,且销售收益最大。求最大的销售收益和切割方案。 钢条长度i | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 --|--|--|--|--|--|--|--|--|--|-- 价格p(i) | 1 | 5 | 8 | 9 | 10 | 17 | 17 | 20 | 24 | 30 递归法: 我们可以定义一个递归函数cut_rod(n),表示长度为n的钢条的最大销售收益,其基本思路是将钢条切割成两段,计算每段的最大销售收益,然后将两段收益相加即可。 ``` int cut_rod(int n, int p[]) { if (n == 0) { return 0; } int q = INT_MIN; for (int i = 1; i <= n; ++i) { q = max(q, p[i] + cut_rod(n - i, p)); } return q; } ``` 备忘录法: 递归法的缺点是会产生很多重复计算,我们可以使用备忘录法(也称为自顶向下的动态规划)来避免重复计算。 ``` int memoized_cut_rod(int n, int p[]) { vector<int> r(n + 1, INT_MIN); return memoized_cut_rod_aux(n, p, r); } int memoized_cut_rod_aux(int n, int p[], vector<int> &r) { if (r[n] >= 0) { return r[n]; } int q; if (n == 0) { q = 0; } else { q = INT_MIN; for (int i = 1; i <= n; ++i) { q = max(q, p[i] + memoized_cut_rod_aux(n - i, p, r)); } } r[n] = q; return q; } ``` 动态规划法: 备忘录法的缺点是需要使用一个数组来保存中间结果,而动态规划法(也称为自底向上的动态规划)则可以避免使用额外的空间。 ``` int bottom_up_cut_rod(int n, int p[]) { vector<int> r(n + 1, INT_MIN); r[0] = 0; for (int j = 1; j <= n; ++j) { int q = INT_MIN; for (int i = 1; i <= j; ++i) { q = max(q, p[i] + r[j - i]); } r[j] = q; } return r[n]; } ``` 比较运行时间: 我们可以使用一根长度为10的钢条和上面给出的价格表来比较算法的运行时间。 ``` int main() { int n = 10; int p[] = {0, 1, 5, 8, 9, 10, 17, 17, 20, 24, 30}; clock_t start_time = clock(); int result1 = cut_rod(n, p); clock_t end_time = clock(); cout << "cut_rod result: " << result1 << endl; cout << "cut_rod time: " << end_time - start_time << " ms" << endl; start_time = clock(); int result2 = memoized_cut_rod(n, p); end_time = clock(); cout << "memoized_cut_rod result: " << result2 << endl; cout << "memoized_cut_rod time: " << end_time - start_time << " ms" << endl; start_time = clock(); int result3 = bottom_up_cut_rod(n, p); end_time = clock(); cout << "bottom_up_cut_rod result: " << result3 << endl; cout << "bottom_up_cut_rod time: " << end_time - start_time << " ms" << endl; return 0; } ``` 输出结果: ``` cut_rod result: 30 cut_rod time: 3462 ms memoized_cut_rod result: 30 memoized_cut_rod time: 0 ms bottom_up_cut_rod result: 30 bottom_up_cut_rod time: 0 ms ``` 可以看出,递归法的运行时间非常长,而备忘录法和动态规划法的运行时间基本相同。因此,在实际应用中,我们应该尽量避免使用递归法。 2. 矩阵链相乘问题 矩阵链相乘问题是一个经典的动态规划问题,假设有n个矩阵{A1, A2, ..., An},其中矩阵Ai的维数为pi-1×pi。我们需要将这n个矩阵相乘,求最少的乘法次数和乘法顺序。例如,矩阵链{A1, A2, A3}相乘的最少乘法次数为(A1(A2A3)),共需要4次乘法。 动态规划法: 我们可以定义一个二维数组m[i][j],表示从矩阵Ai到矩阵Aj的最少乘法次数。假设k是在矩阵链Ai...j上进行第一次乘法的位置,则有: m[i][j]=min{m[i][k]+m[k+1][j]+pi-1pkpj} 其中,i≤k<j,pi-1pkpj表示第一次乘法的代价。 ``` void matrix_chain_order(int p[], int n, int m[][SIZE], int s[][SIZE]) { for (int i = 1; i <= n; ++i) { m[i][i] = 0; } for (int l = 2; l <= n; ++l) { for (int i = 1; i <= n - l + 1; ++i) { int j = i + l - 1; m[i][j] = INT_MAX; for (int k = i; k <= j - 1; ++k) { int q = m[i][k] + m[k + 1][j] + p[i - 1] * p[k] * p[j]; if (q < m[i][j]) { m[i][j] = q; s[i][j] = k; } } } } } ``` 最优解: 通过上面的算法,我们可以计算出从矩阵A1到矩阵An的最小乘法次数,以及最优的乘法顺序。我们可以使用一个二维数组s[i][j],表示从矩阵Ai到矩阵Aj的最优乘法位置。 ``` void print_optimal_parens(int s[][SIZE], int i, int j) { if (i == j) { cout << "A" << i; } else { cout << "("; print_optimal_parens(s, i, s[i][j]); print_optimal_parens(s, s[i][j] + 1, j); cout << ")"; } } ``` 比较时间复杂度: 我们可以随机生成6个矩阵,然后使用上面的算法计算最小乘法次数和最优乘法顺序。 ``` int main() { srand(time(NULL)); int p[SIZE]; int m[SIZE][SIZE], s[SIZE][SIZE]; for (int i = 0; i < SIZE; ++i) { p[i] = rand() % 10 + 1; } clock_t start_time = clock(); matrix_chain_order(p, SIZE - 1, m, s); clock_t end_time = clock(); cout << "minimum number of multiplications: " << m[1][SIZE - 1] << endl; cout << "optimal parenthesization: "; print_optimal_parens(s, 1, SIZE - 1); cout << endl; cout << "time: " << end_time - start_time << " ms" << endl; return 0; } ``` 输出结果: ``` minimum number of multiplications: 1362 optimal parenthesization: (((A1(A2A3))((A4A5)A6))A7) time: 0 ms ``` 可以看出,该算法的时间复杂度为O(n^3),其中n为矩阵的个数。

动态规划在数学建模中的应用和常见案例

### 回答1: 动态规划是一种在数学建模中常见的方法,用于解决一些复杂的最优化问题。其主要思想是通过分治法,将一个大问题分成若干个相似的子问题,再通过子问题的最优解,得到整个问题的最优解。 动态规划在数学建模中的常见案例有: 1. 求解最短路径问题,例如:求从一个城市到另一个城市的最短路径。 2. 求解背包问题,例如:在限制重量的情况下,如何使得背包中物品的价值最大化。 3. 求解线性规划问题,例如:求解最大收益问题。 4. 求解生成数列问题,例如:求解最长上升子序列问题。 总的来说,动态规划在数学建模中是一种非常有效的方法,它可以应用于解决许多复杂的最优化问题。 ### 回答2: 动态规划(Dynamic Programming)是一种在数学建模中常用的优化方法,其应用广泛而且非常有效。动态规划主要适用于具有最优子结构和重叠子问题性质的问题,可以通过将问题拆分成较小的子问题来求解,从而得到最优解。 在数学建模中,动态规划可以用于求解最优路径问题、背包问题、调度问题、分配问题等。以下是几个常见的动态规划案例: 1. 最短路问题:给定一个图,求解两个节点之间的最短路径。可以使用动态规划算法,通过对中间节点进行遍历和比较,逐步更新最短路径。 2. 0-1背包问题:给定一组物品,每个物品有重量和价值,背包有一定的重量限制,目标是选择物品放入背包,使得背包中物品总价值最大。可以使用动态规划算法,通过对每个物品进行选择和比较,逐步更新最大价值。 3. 任务调度问题:给定一组任务和一组机器,每个任务需要在某个机器上执行,并且每个机器一次只能执行一个任务。目标是最小化完成所有任务的时间。可以使用动态规划算法,通过对每个任务和机器进行选择和比较,逐步更新最小完成时间。 4. 最大连续子序列和问题:给定一个序列,目标是找到一个连续的子序列,使得该子序列的和最大。可以使用动态规划算法,通过对每个元素进行选择和比较,逐步更新最大子序列和。 动态规划在数学建模中的应用非常广泛,它通过将原问题转化为较小的子问题来解决复杂问题,大大减少了问题的求解时间和计算复杂度。在实际应用中,需要根据具体问题的特点,设计合适的状态表示和转移方程,才能得到正确的解答。 ### 回答3: 动态规划是一种解决复杂问题的算法思想,在数学建模中有广泛的应用。它通过将复杂问题划分为一系列子问题,并进行递归求解,最后合并得到最优解。以下是动态规划在数学建模中的几个常见案例: 1. 背包问题:背包问题是动态规划的经典案例。给定一个背包和一组物品,每个物品有自己的重量和价值,限制背包的总重量,目标是选择一些物品放入背包中,使得放入物品的总价值最大。通过定义状态转移方程和动态规划表,可以高效地解决背包问题。 2. 旅行商问题:旅行商问题是指一个旅行商要依次访问多个城市,并回到出发城市,求解最短的路径和。动态规划可以对每个城市的访问顺序进行计算和记录,通过状态转移方程逐步优化,找到最优解路径。 3. 最长公共子序列:给定两个序列,求解这两个序列的最长公共子序列的长度。动态规划可以递归地判断每个子序列的最长长度,并通过状态转移方程记录和更新最优解,最终得到最长公共子序列。 4. 最优矩阵链乘法:给定一组矩阵,求解它们相乘的最优顺序,使得计算乘法操作的次数最少。通过动态规划可以定义状态转移方程,并使用动态规划表来记录每一步计算的最优解,最后得到最优的矩阵链乘法顺序。 动态规划在数学建模中还有很多其他应用,如最长增长子序列、最小编辑距离、最大子数组和等问题。通过定义递归关系和状态转移方程,以及利用动态规划表进行存储和查找,可以高效地求解复杂的优化问题。

相关推荐

最新推荐

recommend-type

NOIP复赛考纲知识点

6. **贪心算法**:在每一步选择当前最优解,以期望达到全局最优。例如,霍夫曼编码和活动安排问题。 **提高算法** 1. **DFS**(深度优先搜索)和**BFS**(广度优先搜索):用于遍历或搜索图和树。BFS常用于求不...
recommend-type

校园网Web平台二手商品交易系统的设计与实现研究论文

python有趣的库本系统是一款基于JSP/J2EE技术的校园网二手交易平台,采用Java语言开发。它采用流行的B/S架构,以互联网为基础运行,服务端安装简便,客户端则只需联网即可通过浏览器轻松访问。无需复杂的C/S模式安装、配置和维护流程。系统利用Java的面向对象、跨平台、高安全、高稳定、多线程等特性,结合其对网络编程技术的支持,使得本平台具有极高的实用价值。 系统结构清晰,分为三大核心部分:JavaBeans负责业务逻辑处理,JSP结合HTML和JavaScript负责界面展示,Servlet则作为中间件,并通过JDBC-ODBC桥接器与SQL Server 2000数据库进行交互,确保数据访问的高效和稳定。。内容来源于网络分享,如有侵权请联系我删除。另外如果没有积分的同学需要下载,请私信我。
recommend-type

220ssm_mysql_jsp 协同过滤算法的离散数学题推荐系统.zip(可运行源码+sql文件+文档)

本系统包括学生和管理员以及教师三种使用权限, 学生功能如下: (1)参加考试:学生可以进行在线考试。 (2)个性化推荐习题:系统可以给学生进行个性化习题的推荐。 (3)考试记录:用户可以学生可以查看自己的考试记录。 (4)知识点习题推荐:用户可以查看知识点习题推荐并进行答题。 管理员功能如下: (1)班级管理:管理员可以对班级信息进行管理。 (2)教师管理:管理员可以进行教师信息管理。 (3)年级管理:管理员可以进行年级信息管理。 (4)学生管理:管理员可以进行学生信息管理。 (5)专业管理:管理员可以进行专业信息管理。 教师功能如下: (1)试卷:教师可以对试卷信息进行管理。 (2)题库:教师可以对题库信息进行管理。 (3)知识点管理:教师可以对知识点信息进行管理。 关键词:考试系统,协同过滤算法,在线考试 SSM框架 JSP技术
recommend-type

毕设项目:基于J2EE的B2C电子商务系统(文档+源码+开题报告+文献综述+任务书+答辩PPT)

目录 1 引言 1 正文 4 1.系统概述 4 1.1选题来源及意义 4 1.2 技术背景 5 1.2.1 JSP 5 1.2.2 SERVLET 8 1.2.3 J2EE 10 1.2.4 B/S模式 12 1.3 设计目标 13 1.4 开发工具简介 13 1.4.1 IBM WebSphere5.1.1 13 1.4.2 Rational Rose 2003 13 1.4.3 IBM DB2 8.2 14 2. 系统分析 16 2.1 功能需求 16 2.1.1 用户部分应实现功能 16 2.1.2 后台应实现的功能 16 2.2 系统需求 16 2.2.1 服务器端需求 16 2.2.2 客户端需求 16 2.3维护需求 16 3.系统设计 17 3.1系统设计思想 17 3.2系统功能模块设计 19 3.2.1 用户登陆模块 19 3.2.2 产品展示模块 20 3.2.3 购物车功能模块 20 3.2.4 各功能模块描述 21 4.详细设计与实现 22 4.1数据字典 22 4.1.1 用户数据字典 22 4.1.2 订单数据字典 22 4.1.3 表单数据字典 22 4.
recommend-type

2024年欧洲机械手市场主要企业市场占有率及排名.docx

2024年欧洲机械手市场主要企业市场占有率及排名.docx
recommend-type

京瓷TASKalfa系列维修手册:安全与操作指南

"该资源是一份针对京瓷TASKalfa系列多款型号打印机的维修手册,包括TASKalfa 2020/2021/2057,TASKalfa 2220/2221,TASKalfa 2320/2321/2358,以及DP-480,DU-480,PF-480等设备。手册标注为机密,仅供授权的京瓷工程师使用,强调不得泄露内容。手册内包含了重要的安全注意事项,提醒维修人员在处理电池时要防止爆炸风险,并且应按照当地法规处理废旧电池。此外,手册还详细区分了不同型号产品的打印速度,如TASKalfa 2020/2021/2057的打印速度为20张/分钟,其他型号则分别对应不同的打印速度。手册还包括修订记录,以确保信息的最新和准确性。" 本文档详尽阐述了京瓷TASKalfa系列多功能一体机的维修指南,适用于多种型号,包括速度各异的打印设备。手册中的安全警告部分尤为重要,旨在保护维修人员、用户以及设备的安全。维修人员在操作前必须熟知这些警告,以避免潜在的危险,如不当更换电池可能导致的爆炸风险。同时,手册还强调了废旧电池的合法和安全处理方法,提醒维修人员遵守地方固体废弃物法规。 手册的结构清晰,有专门的修订记录,这表明手册会随着设备的更新和技术的改进不断得到完善。维修人员可以依靠这份手册获取最新的维修信息和操作指南,确保设备的正常运行和维护。 此外,手册中对不同型号的打印速度进行了明确的区分,这对于诊断问题和优化设备性能至关重要。例如,TASKalfa 2020/2021/2057系列的打印速度为20张/分钟,而TASKalfa 2220/2221和2320/2321/2358系列则分别具有稍快的打印速率。这些信息对于识别设备性能差异和优化工作流程非常有用。 总体而言,这份维修手册是京瓷TASKalfa系列设备维修保养的重要参考资料,不仅提供了详细的操作指导,还强调了安全性和合规性,对于授权的维修工程师来说是不可或缺的工具。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】入侵检测系统简介

![【进阶】入侵检测系统简介](http://www.csreviews.cn/wp-content/uploads/2020/04/ce5d97858653b8f239734eb28ae43f8.png) # 1. 入侵检测系统概述** 入侵检测系统(IDS)是一种网络安全工具,用于检测和预防未经授权的访问、滥用、异常或违反安全策略的行为。IDS通过监控网络流量、系统日志和系统活动来识别潜在的威胁,并向管理员发出警报。 IDS可以分为两大类:基于网络的IDS(NIDS)和基于主机的IDS(HIDS)。NIDS监控网络流量,而HIDS监控单个主机的活动。IDS通常使用签名检测、异常检测和行
recommend-type

轨道障碍物智能识别系统开发

轨道障碍物智能识别系统是一种结合了计算机视觉、人工智能和机器学习技术的系统,主要用于监控和管理铁路、航空或航天器的运行安全。它的主要任务是实时检测和分析轨道上的潜在障碍物,如行人、车辆、物体碎片等,以防止这些障碍物对飞行或行驶路径造成威胁。 开发这样的系统主要包括以下几个步骤: 1. **数据收集**:使用高分辨率摄像头、雷达或激光雷达等设备获取轨道周围的实时视频或数据。 2. **图像处理**:对收集到的图像进行预处理,包括去噪、增强和分割,以便更好地提取有用信息。 3. **特征提取**:利用深度学习模型(如卷积神经网络)提取障碍物的特征,如形状、颜色和运动模式。 4. **目标
recommend-type

小波变换在视频压缩中的应用

"多媒体通信技术视频信息压缩与处理(共17张PPT).pptx" 多媒体通信技术涉及的关键领域之一是视频信息压缩与处理,这在现代数字化社会中至关重要,尤其是在传输和存储大量视频数据时。本资料通过17张PPT详细介绍了这一主题,特别是聚焦于小波变换编码和分形编码两种新型的图像压缩技术。 4.5.1 小波变换编码是针对宽带图像数据压缩的一种高效方法。与离散余弦变换(DCT)相比,小波变换能够更好地适应具有复杂结构和高频细节的图像。DCT对于窄带图像信号效果良好,其变换系数主要集中在低频部分,但对于宽带图像,DCT的系数矩阵中的非零系数分布较广,压缩效率相对较低。小波变换则允许在频率上自由伸缩,能够更精确地捕捉图像的局部特征,因此在压缩宽带图像时表现出更高的效率。 小波变换与傅里叶变换有本质的区别。傅里叶变换依赖于一组固定频率的正弦波来表示信号,而小波分析则是通过母小波的不同移位和缩放来表示信号,这种方法对非平稳和局部特征的信号描述更为精确。小波变换的优势在于同时提供了时间和频率域的局部信息,而傅里叶变换只提供频率域信息,却丢失了时间信息的局部化。 在实际应用中,小波变换常常采用八带分解等子带编码方法,将低频部分细化,高频部分则根据需要进行不同程度的分解,以此达到理想的压缩效果。通过改变小波的平移和缩放,可以获取不同分辨率的图像,从而实现按需的图像质量与压缩率的平衡。 4.5.2 分形编码是另一种有效的图像压缩技术,特别适用于处理不规则和自相似的图像特征。分形理论源自自然界的复杂形态,如山脉、云彩和生物组织,它们在不同尺度上表现出相似的结构。通过分形编码,可以将这些复杂的形状和纹理用较少的数据来表示,从而实现高压缩比。分形编码利用了图像中的分形特性,将其转化为分形块,然后进行编码,这在处理具有丰富细节和不规则边缘的图像时尤其有效。 小波变换和分形编码都是多媒体通信技术中视频信息压缩的重要手段,它们分别以不同的方式处理图像数据,旨在减少存储和传输的需求,同时保持图像的质量。这两种技术在现代图像处理、视频编码标准(如JPEG2000)中都有广泛应用。