将一个有方向的加权网络图(Source,target,weight)转化为无方向的加权网络图,且新的边的权重为原来有向图中两个方向的和
时间: 2024-12-17 18:21:40 浏览: 5
将有向加权图转为无向加权图的过程称为图的“邻接矩阵对称化”或“无向化”。在这个过程中,对于每一对源节点`source`和目标节点`target`,如果原始图中有从`source`到`target`的边,权重设为`weight`;同时,因为是无向图,还需要加上从`target`到`source`的边,权重则是从`source`到`target`边的权重值。
下面是一个简单的例子用Python来实现这个过程:
```python
def directed_to_undirected(weighted_graph, weight_key='weight'):
undirected_weighted_graph = {}
for source, edges in weighted_graph.items():
for target, weight in edges.items():
if target not in undirected_weighted_graph:
undirected_weighted_graph[target] = {source: weight}
else:
undirected_weighted_graph[target][source] = weight if source not in undirected_weighted_graph[target] else undirected_weighted_graph[target][source] + weight
# 对称添加边,权重为两者之和
if source != target and (source, target) not in undirected_weighted_graph:
undirected_weighted_graph[source][target] = weight
elif source != target and (source, target) in undirected_weighted_graph:
undirected_weighted_graph[source][target] += weight
return undirected_weighted_graph
# 示例:
weighted_directed_graph = {
'A': {'B': 5, 'C': 7},
'B': {'D': 3},
'C': {},
'D': {'E': 4}
}
undirected_weighted_graph = directed_to_undirected(weighted_directed_graph)
```
这里的`weight_key`参数可以根据实际数据结构中的权重键进行修改,默认为`'weight'`。结果`undirected_weighted_graph`就是无向图的形式,其中新边的权重是原边的双向权重总和。
阅读全文