for s, a, r, ns, d in zip(state, action, reward, next_state, done): agent.step(s, a, r, ns, d, frame, writer)
时间: 2023-10-16 19:07:42 浏览: 159
这段代码是一个循环语句,它遍历了五个列表 `state`, `action`, `reward`, `next_state` 和 `done` 中的元素,然后调用 `agent.step()` 方法,将这些元素作为参数传递给它。具体来说,它将当前状态 `s`、动作 `a`、奖励 `r`、下一个状态 `ns`、完成标志 `d`、帧数 `frame` 和写入器 `writer` 传递给 `agent.step()` 方法。这个循环的目的是更新智能体的状态。
相关问题
def train_model(stock_df, agent, num_episodes): for episode in range(num_episodes): obs = stock_df.iloc[0] state = get_state(obs) done = False total_reward = 0 while not done: action = agent.act(state) next_obs = stock_df.iloc[agent.current_step + 1] next_state = get_state(next_obs) reward = get_reward(action, obs, next_obs) total_reward += reward done = agent.current_step == len(stock_df) - 2 agent.learn(state, action, reward, next_state, done) state = next_state obs = next_obs # 输出每个episode的总奖励 print('Episode:', episode, 'Total Reward:', total_reward) # 逐渐降低探索率 agent.set_exploration_rate(agent.exploration_rate * 0.99)修改代码
这段代码中,训练模型时出现了错误,是因为 QLearningAgent 对象没有 current_step 属性,需要在 QLearningAgent 类中实现该属性。你可以在 QLearningAgent 类中添加 current_step 属性,并在 act 方法中更新该属性。例如:
```
class QLearningAgent:
def __init__(self, state_size, action_size):
self.state_size = state_size
self.action_size = action_size
self.q_table = np.zeros((state_size, action_size))
self.exploration_rate = 1.0
self.current_step = 0 # 新增 current_step 属性
def act(self, state):
if np.random.rand() < self.exploration_rate:
return np.random.choice(self.action_size)
q_values = self.q_table[state]
return np.argmax(q_values)
def learn(self, state, action, reward, next_state, done):
# 更新 Q 表
q_next = self.q_table[next_state]
if done:
q_next = np.zeros(self.action_size)
td_target = reward + GAMMA * np.max(q_next)
td_error = td_target - self.q_table[state, action]
self.q_table[state, action] += ALPHA * td_error
# 更新探索率和当前步数
self.current_step += 1
self.exploration_rate *= EXPLORATION_DECAY
self.exploration_rate = max(EXPLORATION_MIN, self.exploration_rate)
```
在修改后的代码中,我们在 QLearningAgent 类中新增了 current_step 属性,并在 act 方法和 learn 方法中更新该属性。最后,在训练模型时,我们可以使用 QLearningAgent 对象的 current_step 属性来获取当前步数,而不会再出现属性错误。
while not ep_done: num_steps += 1 if train_params.RENDER: self.env_wrapper.render() action = self.sess.run(self.actor_net.output, {self.state_ph:np.expand_dims(state, 0)})[0] # Add batch dimension to single state input, and remove batch dimension from single action output action += (gaussian_noise() * train_params.NOISE_DECAY**num_eps) next_state, reward, terminal = self.env_wrapper.step(action) episode_reward += reward next_state = self.env_wrapper.normalise_state(next_state) reward = self.env_wrapper.normalise_reward(reward) self.exp_buffer.append((state, action, reward)) if len(self.exp_buffer) >= train_params.N_STEP_RETURNS: state_0, action_0, reward_0 = self.exp_buffer.popleft() discounted_reward = reward_0 gamma = train_params.DISCOUNT_RATE for (_, _, r_i) in self.exp_buffer: discounted_reward += r_i * gamma gamma *= train_params.DISCOUNT_RATE run_agent_event.wait() PER_memory.add(state_0, action_0, discounted_reward, next_state, terminal, gamma) state = next_state
这段代码是主循环中的一部分,其中包含了执行动作、观察环境、更新经验缓存等操作。具体来说,算法执行以下步骤:
1. 累计步数;
2. 如果需要渲染环境,则渲染环境;
3. 使用Actor网络计算当前状态的动作;
4. 对动作添加高斯噪声;
5. 执行动作并观察新状态和奖励;
6. 累计回报;
7. 对新状态进行归一化处理;
8. 对奖励进行归一化处理;
9. 将经验添加到经验缓存中;
10. 如果经验缓存已满,则计算N步回报,并将经验添加到优先经验回放缓存中;
11. 更新状态。
在这个过程中,Actor网络用于计算当前状态下的动作,而高斯噪声则用于增加探索性,以便算法能够更好地探索环境。在执行动作之后,算法会观察新状态和奖励,并将它们添加到经验缓存中。如果经验缓存已满,算法会计算N步回报,并将经验添加到优先经验回放缓存中。最后,算法会更新状态并继续执行主循环。
阅读全文