通过c语言的非递归算法求解hanoi

时间: 2023-06-02 22:07:13 浏览: 41
塔问题的步骤数是多少? 对于汉诺塔问题,步骤数为 2^n - 1,其中 n 为盘子的数量。通过 c 语言的非递归算法可以使用栈来实现。具体实现代码可以参考以下示例: #include <stdio.h> #include <stdlib.h> #include <limits.h> #define MAX_DISKS 20 typedef struct { int n, r, i, j; } Frame; typedef struct { int *data; int capacity; int top; } Stack; void stack_init(Stack *s, int capacity) { s->capacity = capacity; s->data = (int*) malloc(sizeof(int) * capacity); s->top = -1; } void stack_push(Stack *s, int value) { if (s->top == s->capacity - 1) { printf("stack overflow\n"); exit(1); } s->data[++s->top] = value; } int stack_pop(Stack *s) { if (s->top == -1) { printf("stack underflow\n"); exit(1); } return s->data[s->top--]; } void hanoi(int n) { Stack s; Frame frame; stack_init(&s, n + 1); stack_push(&s, INT_MAX); frame.n = n; frame.r = 1; while (frame.n > 0 || s.top != 0) { if (frame.n > 0) { stack_push(&s, frame.n); frame.i = 1; frame.j = 2; frame.n -= 1; } else { frame.n = stack_pop(&s); if (frame.n == INT_MAX) break; frame.r = stack_pop(&s); frame.i = 6 - frame.r - frame.i; printf("Move disk %d from rod %d to rod %d\n", frame.n, frame.i, frame.j); frame.n -= 1; frame.r = frame.i; } } } int main() { int n; printf("Enter the number of disks: "); scanf("%d", &n); hanoi(n); printf("Steps: %d\n", (1 << n) - 1); return 0; } 注意事项: - 栈的使用可以避免递归函数调用带来的额外开销。 - 栈的容量需要预估,如果没有预估到位,可能会导致栈溢出。

相关推荐

汉诺塔是一个经典的递归问题,但也可以使用非递归算法来解决。下面是一个使用C语言实现的非递归算法: c #include <stdio.h> #include <stdlib.h> typedef struct { int n; char source, temp, dest; } State; typedef struct { State *array; int size; int top; } Stack; Stack *createStack(int size) { Stack *stack = (Stack *) malloc(sizeof(Stack)); stack->array = (State *) malloc(sizeof(State) * size); stack->size = size; stack->top = -1; return stack; } void push(Stack *stack, State state) { stack->array[++stack->top] = state; } State pop(Stack *stack) { return stack->array[stack->top--]; } void hanoi(int n, char source, char temp, char dest) { Stack *stack = createStack(n); push(stack, (State) {n, source, temp, dest}); while (stack->top >= 0) { State currentState = pop(stack); if (currentState.n == 1) { printf("Move disk from %c to %c\n", currentState.source, currentState.dest); } else { push(stack, (State) {currentState.n - 1, currentState.temp, currentState.source, currentState.dest}); push(stack, (State) {1, currentState.source, currentState.temp, currentState.dest}); push(stack, (State) {currentState.n - 1, currentState.source, currentState.dest, currentState.temp}); } } free(stack->array); free(stack); } int main() { int n; printf("Enter the number of disks: "); scanf("%d", &n); hanoi(n, 'A', 'B', 'C'); return 0; } 这个算法使用了一个栈来模拟递归的过程。首先将初始状态压入栈中,然后在每一次循环中取出栈顶状态进行处理。当只有一个盘子时,直接移动即可,否则将分解成三个子问题,分别将n-1个盘子从源柱移动到辅助柱,将最后一个盘子从源柱移动到目标柱,最后将n-1个盘子从辅助柱移动到目标柱。循环直到栈为空,即所有盘子都移动到了目标柱。 示例代码中的hanoi函数接受三个参数:n表示盘子的个数,source表示源柱,temp表示辅助柱,dest表示目标柱。在每一次移动盘子时,会打印出移动的步骤。 你可以在程序中输入想要的盘子数量,然后运行该程序来查看非递归算法的结果。
Hanoi塔问题是一个经典的递归问题,但是也可以使用非递归算法来解决。以下是使用栈实现Hanoi塔问题的非递归算法C代码: c #include <stdio.h> #include <stdlib.h> typedef struct { int *arr; int top; int size; } Stack; // 初始化栈 Stack *initStack(int size) { Stack *s = (Stack*)malloc(sizeof(Stack)); s->arr = (int*)malloc(sizeof(int) * size); s->top = -1; s->size = size; return s; } // 判空 int isEmpty(Stack *s) { return s->top == -1; } // 判满 int isFull(Stack *s) { return s->top == s->size - 1; } // 入栈 void push(Stack *s, int x) { if (isFull(s)) { printf("Stack is full!\n"); return; } s->arr[++s->top] = x; } // 出栈 int pop(Stack *s) { if (isEmpty(s)) { printf("Stack is empty!\n"); return -1; } return s->arr[s->top--]; } // 移动 void move(Stack *a, Stack *b) { int x = pop(a); push(b, x); printf("Move %d from %d to %d\n", x, a->arr[0], b->arr[0]); } // Hanoi塔问题的非递归算法 void hanoi(int n, Stack *a, Stack *b, Stack *c) { int i, step = 0; // 初始状态 for (i = n; i > 0; i--) { push(a, i); } // 栈操作模拟递归 while (!isEmpty(a) || !isEmpty(b)) { while (!isEmpty(a)) { move(a, c); step++; } if (step == n) break; move(b, a); step++; while (!isEmpty(c)) { move(c, b); step++; } if (step == n) break; move(a, c); step++; while (!isEmpty(b)) { move(b, a); step++; } if (step == n) break; move(c, b); step++; } } int main() { int n = 3; Stack *a = initStack(n); Stack *b = initStack(n); Stack *c = initStack(n); a->arr[0] = 1; b->arr[0] = 2; c->arr[0] = 3; hanoi(n, a, b, c); return 0; } 在上述代码中,我们使用了三个栈来表示三个柱子,首先将所有盘子都压入第一个栈a中,然后根据Hanoi塔问题的规则,不断将盘子从一个柱子移动到另一个柱子,直到所有盘子都移动到了目标柱子。移动盘子的操作使用了move函数来实现,这个函数将一个栈中的顶部元素弹出并压入另一个栈中,同时输出移动的信息。在主函数中,我们初始化了三个栈,并将第一个栈的第一个元素设为1,第二个栈的第一个元素设为2,第三个栈的第一个元素设为3,然后调用hanoi函数来解决Hanoi塔问题。
汉诺塔问题是经典的递归问题,它的求解过程可以用递归算法来实现。以下是汉诺塔问题的C语言递归算法分析。 1. 问题描述 汉诺塔问题是指有三根柱子A、B、C,在A柱子上从下往上按照大小顺序放置n个盘子,要求把这n个盘子移动到C柱子上,移动过程中可以借助B柱子,但是要满足以下条件: 1. 每次只能移动一个盘子; 2. 盘子不能放在比它小的盘子上面。 2. 递归实现 汉诺塔问题可以通过递归实现,具体实现过程如下: 1. 将n-1个盘子从A柱子移动到B柱子上,借助C柱子; 2. 将A柱子上最大的盘子移动到C柱子上; 3. 将n-1个盘子从B柱子移动到C柱子上,借助A柱子。 递归终止条件是只有一个盘子时直接将其从A柱子移动到C柱子上。 3. 代码实现 下面是汉诺塔问题的C语言递归算法实现代码: c #include <stdio.h> void hanoi(int n, char from, char to, char via) { if (n == 1) { printf("Move disk %d from %c to %c\n", n, from, to); } else { hanoi(n-1, from, via, to); printf("Move disk %d from %c to %c\n", n, from, to); hanoi(n-1, via, to, from); } } int main() { int n = 3; // 三个盘子 hanoi(n, 'A', 'C', 'B'); return 0; } 代码中,hanoi函数用于求解汉诺塔问题,n表示盘子的个数,from表示起始柱子,to表示目标柱子,via表示中介柱子。在函数中,如果n等于1,则直接将盘子从起始柱子移动到目标柱子上;否则,递归地将n-1个盘子从起始柱子移动到中介柱子上,然后将最大的盘子从起始柱子移动到目标柱子上,最后递归地将n-1个盘子从中介柱子移动到目标柱子上。 在main函数中,首先定义了盘子的个数n,然后调用hanoi函数求解汉诺塔问题。 4. 总结 汉诺塔问题是经典的递归问题,通过递归算法可以简便地实现其求解过程。在实现时,需要注意递归的终止条件和递归调用的顺序。
### 回答1: 随着计算机的发展,汉诺塔的递归算法已经成为了一种优秀的算法,可以轻松地实现汉诺塔问题的求解。但是,我们也可以将汉诺塔问题转化为非递归算法来解决,这种方法往往会增加代码复杂度,但在某些情况下也能够达到不错的效果。因此,我们可以根据具体的需求和场景选择适合的算法来解决汉诺塔问题。 ### 回答2: Hanoi塔问题源于一个古老的传说,传说有三根柱子和64个圆盘,圆盘大小不一,大的在下小的在上,穿在中间柱子的杆子上,目标是将所有盘子从中间柱子移到右边柱子。但是,在移动的过程中,你不能把一个大盘子放在一个小盘子上面。 Hanoi塔问题可以通过递归算法来解决。具体实现方法是:假设有一个汉诺塔问题,有三个柱子A、B和C,A柱子有n个盘子,B柱子没有,C柱子没有,我们需要把所有的盘子从A柱子移到C柱子上。我们可以将这个问题分成三个子问题:将A柱子上n-1个盘子移到B柱子上,将A柱子上的最后一个盘子移到C柱子上,将B柱子上的所有n-1个盘子移到C柱子上。其中,第一步和第三步就是将n-1个盘子移动到另一个柱子上,在这里我们可以使用递归来完成子问题的解决。 递归算法的伪代码如下: void Hanoi(int n, char src, char dest, char temp) { if (n == 1) { // 如果只有一个盘子,直接将盘子移动到目标柱子 cout << "Move disk 1 from " << src << " to " << dest << endl; return ; } Hanoi(n - 1, src, temp, dest); // 将A柱子上n-1个盘子移到B柱子上 cout << "Move disk " << n << " from " << src << " to " << dest << endl; // 将A柱子上最后一个盘子移到C柱子上 Hanoi(n - 1, temp, dest, src); // 将B柱子上n-1个盘子移到C柱子上 } 转化为非递归算法的实现方法是,可以使用栈来存储每一个子问题的状态,以便在需要的时候恢复状态,从而实现递归算法的非递归调用。我们可以使用一个自定义结构体来存储每个问题的状态,包括盘子数量,源柱子,目标柱子和中间柱子。每当需要解决一个新的子问题时,就将其状态压入栈中,然后继续解决子问题。如果遇到栈顶问题的子问题都已经解决了,就将栈顶元素弹出栈,并将其状态恢复到上一步。具体的实现方法如下: void Hanoi(int n, char src, char dest, char temp) { stack<state> S; state init_state = {n, src, dest, temp}; S.push(init_state); while (!S.empty()) { state cur_state = S.top(); if (cur_state.n == 1) { // 如果只有一个盘子,直接将盘子移动到目标柱子 cout << "Move disk 1 from " << cur_state.src << " to " << cur_state.dest << endl; S.pop(); continue; } if (cur_state.tag == 0) { // 第一次调用该子问题,将其分解为两个子问题并压栈 state sub_state1 = {cur_state.n - 1, cur_state.src, cur_state.temp, cur_state.dest, 0}; state sub_state2 = {1, cur_state.src, cur_state.dest, cur_state.temp, 1}; state sub_state3 = {cur_state.n - 1, cur_state.temp, cur_state.dest, cur_state.src, 0}; S.push(sub_state1); S.push(sub_state2); S.push(sub_state3); cur_state.tag = 1; } else if (cur_state.tag == 1) { // 第二次调用该子问题,判断其子问题是否已全部解决 state sub_state3 = S.top(); S.pop(); state sub_state2 = S.top(); S.pop(); state sub_state1 = S.top(); S.pop(); if (sub_state3.tag == 2) { // 如果第三个子问题已经解决,则弹出栈顶元素并将状态恢复到上一步 S.pop(); continue; } if (sub_state2.tag == 2) { // 如果第二个子问题已经解决,则将第三个子问题入栈 S.push(sub_state1); S.push(sub_state3); sub_state3.tag = 0; S.push(sub_state3); } else { // 如果第一个子问题还没有解决,则将第二个子问题入栈 S.push(sub_state1); S.push(sub_state2); sub_state2.tag = 0; S.push(sub_state2); } } else { // 第三次调用该子问题,将其子问题标记为已解决 state sub_state3 = S.top(); S.pop(); sub_state3.tag = 2; S.push(sub_state3); } } } 通过以上方法,我们可以将递归算法转化为非递归算法来解决Hanoi塔问题,同时保持原有递归算法的思路和结构不变,只需要在递归调用过程中将状态保存到栈中即可。 ### 回答3: Hanoi塔是一种数学谜题,它由三个棒子和一些盘子组成,盘子从小到大放在一个棒子上,较小的盘子在较大的盘子上面。目标是将三个棒子上的所有盘子移到另一个棒子上,每次只能移动一个盘子,并且任何时刻一个大盘子不能放在一个小盘子上面。 递归算法是解决Hanoi塔问题的一种非常常见和高效的方法。递归算法基于以下思路:移动n个盘子的问题可以被分解为移动n-1个盘子和移动最大的盘子。如果我们知道如何移动n-1个盘子,我们可以将它们移到第二个棒子上,并将最大的盘子移到第三个棒子上。接下来,我们将第二个棒子上的n-1个盘子移到第三个棒子上即可。 以下是递归算法的伪代码: 1. 如果n = 1,将盘子从from移动到to 2. 否则,递归移动(n-1)个盘子到中间棒子 3. 把最后一个盘子从from移动到to 4. 递归移动(n-1)个盘子从中间棒子到to 下面是相应的Python代码: def hanoi(n, a, b, c): if n == 1: print("Move disk 1 from", a, "to", c) else: hanoi(n-1, a, c, b) print("Move disk", n, "from", a, "to", c) hanoi(n-1, b, a, c) 现在我们来看看如何将递归算法转换为非递归算法。我们可以使用栈来存储要处理的指令。每个指令包括一个要移动的盘子数,其起始棒子和目标棒子。我们在栈中插入起始指令,然后循环执行以下步骤,直到栈为空: 1. 从栈顶弹出一个指令 2. 如果指令中的盘子数为1,执行一次移动并开始下一轮循环。 3. 如果指令中的盘子数大于1,则新建三个指令,第一个指令是将n-1个盘子从起始棒子移动到目标棒子上,第二个指令是将最后一个盘子移到目标棒子,第三个指令是将n-1个盘子从中间棒子移动到目标棒子上。按顺序将这三个指令压入栈中。 下面是相应的Python代码: def hanoi_iter(n, a, b, c): stack = [(n, a, b, c)] while stack: disks, from_, to_, tmp_ = stack.pop() if disks == 1: print("Move disk 1 from", from_, "to", to_) else: stack.append((disks-1, from_, tmp_, to_)) stack.append((1, from_, to_, tmp_)) stack.append((disks-1, tmp_, to_, from_)) 递归和非递归算法都可以用来解决Hanoi塔问题。对于小的n,递归可能会更快,但是非递归算法在处理大的n时可能更有效。同时,非递归算法更易于理解和调试,因为它不会调用栈溢出问题。
### 回答1: 汉诺塔问题可以用递归算法来解决,用C语言实现的话大概是这样: void hanoi(int n, char A, char B, char C) { if(n == 1) { printf("Move disk 1 from %c to %c\n", A, C); return; } hanoi(n-1, A, C, B); printf("Move disk %d from %c to %c\n", n, A, C); hanoi(n-1, B, A, C); } ### 回答2: 汉诺塔问题是经典的递归问题,通过使用C语言,我们可以编写递归算法来解决这个问题。 首先,我们定义一个函数hanoi来解决汉诺塔问题。该函数接受三个参数:n表示要移动的盘子的数量,start表示起始柱子,end表示目标柱子。 c #include <stdio.h> void hanoi(int n, char start, char end) { if (n == 1) { printf("从 %c 移动到 %c\n", start, end); return; } char temp = 'A' + 'B' + 'C' - start - end; // 将n-1个盘子从起始柱子移动到临时柱子 hanoi(n-1, start, temp); // 将最后一个盘子从起始柱子移动到目标柱子 printf("从 %c 移动到 %c\n", start, end); // 将n-1个盘子从临时柱子移动到目标柱子 hanoi(n-1, temp, end); } 在hanoi函数中,我们首先判断递归的终止条件,即只有一个盘子时,直接将盘子从起始柱子移动到目标柱子。否则,我们需要将n-1个盘子从起始柱子移动到临时柱子,然后将最后一个盘子从起始柱子移动到目标柱子,最后再将n-1个盘子从临时柱子移动到目标柱子。 使用以上递归算法,我们可以解决汉诺塔问题。 ### 回答3: 汉诺塔问题是一个经典的数学问题,通过使用C语言递归算法可以非常简洁地解决。汉诺塔问题的规则如下:有三根柱子,分别标记为A、B、C,初始时所有的圆盘都放在柱子A上,且按从小到大的顺序从上到下依次叠放。要求通过这三根柱子将所有的圆盘移动到柱子C上,期间可以借助柱子B辅助移动,但必须满足以下规则: 1. 每次只能移动一个圆盘。 2. 大圆盘不能放在小圆盘上面。 使用递归算法来解决汉诺塔问题可以按照以下步骤: 1. 当只有一个圆盘需要移动时,直接将它从柱子A移动到柱子C上。 2. 当有多个圆盘需要移动时,可以分解为三个步骤: a. 将除了最底下的一个圆盘外的其他圆盘从柱子A移动到柱子B上(借助柱子C)。 b. 将最底下的一个圆盘从柱子A移动到柱子C上。 c. 将之前移动到柱子B上的所有圆盘从柱子B移动到柱子C上(借助柱子A)。 以上步骤可以通过递归的方式重复,直到只有一个圆盘需要移动为止。 下面是用C语言代码实现递归算法解决汉诺塔问题的示例: c #include <stdio.h> void hanoi(int n, char A, char B, char C) { if (n == 1) { printf("Move disk 1 from %c to %c\n", A, C); return; } hanoi(n-1, A, C, B); printf("Move disk %d from %c to %c\n", n, A, C); hanoi(n-1, B, A, C); } int main() { int n = 3; // 圆盘的数量 hanoi(n, 'A', 'B', 'C'); return 0; } 上述代码中,hanoi函数接受四个参数,分别表示圆盘的数量n,起始柱子A,辅助柱子B,目标柱子C。在递归过程中,会输出每一步的移动操作。最后在main函数中调用hanoi函数开始解决汉诺塔问题。 通过递归算法解决汉诺塔问题可以很好地展示递归思想的威力,相比其他方法更加简洁高效。
请看以下代码: c #include <stdio.h> void move(int n, char A, char B, char C) { if (n == 1) { printf("%c -> %c\n", A, C); return; } move(n - 1, A, C, B); printf("%c -> %c\n", A, C); move(n - 1, B, A, C); } int main() { int n; printf("请输入汉诺塔的层数:"); scanf("%d", &n); move(n, 'A', 'B', 'C'); return 0; } 注意,这是使用递归来解决汉诺塔问题的代码,如果你希望使用非递归解决汉诺塔问题,可以参考以下原理: 使用非递归方法解决汉诺塔问题可以使用栈来模拟递归过程。首先,建立一个栈,不断将问题压入栈中,直到问题被解决。具体步骤如下: 1.定义一个结构体,包含三个成员,分别代表盘子的大小、起始柱子和目标柱子。 2.按照递归的思路,将问题划分为多个子问题,并分别压入栈中,直到问题被分解到只有一个盘子时停止。 3.不断从栈中弹出问题,并依次解决它们,直到栈为空。对于每个问题,首先判断是否已经无法再分解,如果是,则直接移动盘子;如果不是,则先将子问题按照从小到大的顺序依次压入栈中。 下面是使用非递归方法解决汉诺塔问题的代码: c #include <stdio.h> #include <stdlib.h> struct StackNode { int n; // 盘子的大小 char from, to; // 起始柱子和目标柱子 int step; // 步数 }; struct Stack { struct StackNode *data; // 栈中存储的数据 int max_size; // 栈的大小 int top; // 栈顶位置 }; void init_stack(struct Stack *s, int max_size) { s->data = (struct StackNode *) malloc(max_size * sizeof(struct StackNode)); s->max_size = max_size; s->top = -1; } void push(struct Stack *s, struct StackNode *x) { if (s->top == s->max_size - 1) { printf("Stack is full!\n"); return; } s->top++; s->data[s->top] = *x; } void pop(struct Stack *s) { if (s->top == -1) { printf("Stack is empty!\n"); return; } s->top--; } struct StackNode *top(struct Stack *s) { if (s->top == -1) { printf("Stack is empty!\n"); return NULL; } return &(s->data[s->top]); } int is_stack_empty(struct Stack *s) { return s->top == -1; } void move(int n, char from, char to, int step) { printf("%c -> %c, Step %d\n", from, to, step); } void hanoi(int n, char from, char to) { struct Stack s; init_stack(&s, 100); struct StackNode node; node.n = n; node.from = from; node.to = to; node.step = 0; push(&s, &node); while (!is_stack_empty(&s)) { struct StackNode *cur = top(&s); if (cur->n == 1) { move(1, cur->from, cur->to, cur->step + 1); pop(&s); } else if (cur->n > 1) { if (is_stack_empty(&s)) { printf("Stack is empty!\n"); break; } struct StackNode *next = top(&s); if (next->n != cur->n - 1) { node.n = cur->n - 1; node.from = cur->from; node.to = get_other_peg(cur->from, cur->to); node.step = cur->step; push(&s, &node); } else { move(1, cur->from, cur->to, cur->step + 1); pop(&s); if (!is_stack_empty(&s)) { next = top(&s); if (next->n != cur->n - 1) { node.n = cur->n - 1; node.from = get_other_peg(cur->from, cur->to); node.to = cur->to; node.step = cur->step + 1; push(&s, &node); } else { move(1, cur->to, next->to, cur->step + 2); pop(&s); } } else break; } } else break; } } int main() { int n; printf("请输入汉诺塔的层数:"); scanf("%d", &n); hanoi(n, 'A', 'C'); return 0; } char get_other_peg(char a, char b) { switch (a) { case 'A': if (b == 'B') return 'C'; if (b == 'C') return 'B'; case 'B': if (b == 'A') return 'C'; if (b == 'C') return 'A'; case 'C': if (b == 'A') return 'B'; if (b == 'B') return 'A'; } return ' '; } 这里使用了一个栈来模拟递归过程,具体实现可以参考代码注释。
Hanoi塔是一个经典的递归问题,它可以用C语言来实现。Hanoi塔问题的规则是,有三根柱子A、B、C,以及n个不同大小的圆盘,初始时,所有圆盘都放在柱子A上,目标是将所有圆盘从A柱子移动到C柱子上,每次只能移动一个圆盘,并且大的圆盘不能放在小的圆盘上面。 要解决Hanoi塔问题,可以使用递归的方法。递归的思想是将大问题分解成一个个小问题来解决,然后通过组合小问题的解来解决整个问题。 在这个问题中,我们可以将n个圆盘的移动分解为三个步骤: 1. 将n-1个圆盘从A柱子移动到B柱子上; 2. 将最大的一个圆盘从A柱子移动到C柱子上; 3. 将n-1个圆盘从B柱子移动到C柱子上。 这样,问题就被分解成了三个小问题,而这三个小问题与原问题的规模相比减小了,因此可以使用递归的方法来解决。 具体的C语言递归代码如下: c void hanoi(int n, char source, char auxiliary, char target) { if (n == 1) { // 只有一个圆盘时,直接从source柱子移动到target柱子上 printf("Move disk from %c to %c\n", source, target); return; } hanoi(n-1, source, target, auxiliary); // 递归调用步骤1 printf("Move disk from %c to %c\n", source, target); // 移动最大的圆盘 hanoi(n-1, auxiliary, source, target); // 递归调用步骤3 } int main() { int n; printf("Enter the number of disks: "); scanf("%d", &n); hanoi(n, 'A', 'B', 'C'); // 调用递归函数 return 0; } 通过上述C语言代码,我们可以递归地解决Hanoi塔问题,并输出每一步的移动方式。这个递归方法的时间复杂度是O(2^n),因为每个圆盘都要移动2^n次。但是由于递归的特性,它的空间复杂度是O(n),因为每次递归调用时需要保存函数的局部变量。

最新推荐

汉诺塔递归算法--C语言

汉诺塔递归算法: 问题抽象  3个塔,n个碟子  初始:所有碟子放在1号塔,大的在底下,小的在上面  任务:把碟子移动到2号塔,顺序不变, 可用3号塔辅助  限制  每次只能移动一个碟子  总是大碟子...

企业人力资源管理系统的设计与实现-计算机毕业论文.doc

企业人力资源管理系统的设计与实现-计算机毕业论文.doc

"风险选择行为的信念对支付意愿的影响:个体异质性与管理"

数据科学与管理1(2021)1研究文章个体信念的异质性及其对支付意愿评估的影响Zheng Lia,*,David A.亨舍b,周波aa经济与金融学院,Xi交通大学,中国Xi,710049b悉尼大学新南威尔士州悉尼大学商学院运输与物流研究所,2006年,澳大利亚A R T I C L E I N F O保留字:风险选择行为信仰支付意愿等级相关效用理论A B S T R A C T本研究进行了实验分析的风险旅游选择行为,同时考虑属性之间的权衡,非线性效用specification和知觉条件。重点是实证测量个体之间的异质性信念,和一个关键的发现是,抽样决策者与不同程度的悲观主义。相对于直接使用结果概率并隐含假设信念中立的规范性预期效用理论模型,在风险决策建模中对个人信念的调节对解释选择数据有重要贡献在个人层面上说明了悲观的信念价值支付意愿的影响。1. 介绍选择的情况可能是确定性的或概率性�

动态规划与最大子数组和问题:如何高效解决序列中的最大子数组和

## 1. 引言 ### 1.1 背景介绍 动态规划是一种解决复杂问题的算法设计方法,它通过将问题分解成子问题,并解决每个子问题,从而逐步构建最优解。在计算机科学和算法领域,动态规划被广泛应用于优化问题的求解。 ### 1.2 动态规划在算法中的重要性 动态规划不仅仅是一种算法,更是一种解决问题的思维方式。它通过保存子问题的解,避免了重复计算,从而在时间和空间上实现了效率的提升。这种思想在很多经典算法问题中都发挥着关键作用,其中之一便是最大子数组和问题。 ### 1.3 最大子数组和问题的实际应用场景 最大子数组和问题是在一个数组中找到一个具有最大和的连续子数组的问题。这个问题在实际中有

devc++6.3大小写字母转换

根据提供的引用内容,无法直接回答关于 Dev-C++ 6.3 的大小写字母转换问题。Dev-C++ 是一个集成开发环境(IDE),用于编写和运行 C/C++ 程序。如果您想要实现大小写字母转换,可以使用 C++ 标准库中的 toupper() 和 tolower() 函数。这两个函数分别将字符转换为大写和小写形式。以下是一个简单的示例程序: ```c++ #include <iostream> #include <string> using namespace std; int main() { string str = "Hello, World!"; for (int

基于ADuC812单片机的温湿度检测仪-毕业设计.doc

基于ADuC812单片机的温湿度检测仪-毕业设计.doc

"Python编程新手嵌套循环练习研究"

埃及信息学杂志24(2023)191编程入门练习用嵌套循环综合练习Chinedu Wilfred Okonkwo,Abejide Ade-Ibijola南非约翰内斯堡大学约翰内斯堡商学院数据、人工智能和数字化转型创新研究小组阿提奇莱因福奥文章历史记录:2022年5月13日收到2023年2月27日修订2023年3月1日接受保留字:新手程序员嵌套循环练习练习问题入门编程上下文无关语法过程内容生成A B S T R A C T新手程序员很难理解特定的编程结构,如数组、递归和循环。解决这一挑战的一种方法是为学生提供这些主题中被认为难以理解的练习问题-例如嵌套循环。实践证明,实践有助于程序理解,因此,由于手动创建许多实践问题是耗时的;合成这些问题是一个值得研究的专家人工智能任务在本文中,我们提出了在Python中使用上下文无关语法进行嵌套循环练习的综合。我们定义了建模程序模板的语法规则基于上�

区间动态规划实践:如何在字符串和数组中处理复杂的区间问题

# 区间动态规划实践:如何在字符串和数组中处理复杂的区间问题? ## 1. 引言 ### 1.1 什么是区间动态规划? 动态规划(Dynamic Programming,简称DP)是一种在计算机科学中常见的问题求解方法。而区间动态规划则是在这一思想基础上针对区间问题的一种具体实践。区间动态规划通常涉及字符串和数组等数据结构,在解决各种复杂问题时展现出强大的优势。 ### 1.2 区间动态规划在字符串和数组中的应用价值 区间动态规划的应用不仅仅局限于理论层面,它在实际问题中能够有效解决各种涉及区间操作的场景。通过深入理解区间动态规划的原理和实践经验,我们能够更好地处理字符串和数组中的复

4 1 C:\Users\魏榕本榕\Desktop\未命名2.c [Error] unknown type name 'LinkList'

根据提供的引用内容,我们无法确定您的问题的具体背景和上下文。但是,根据引用和引用的内容,我们可以推测您可能遇到了以下问题: 您的C语言程序中使用了未定义的类型名LinkList,导致编译错误。请检查您的程序中是否正确定义了LinkList类型,并且是否正确包含了相关头文件。 您的Java程序中使用了LinkedList类,但在迭代LinkedList时修改了它,导致了ConcurrentModificationException异常。请确保在迭代LinkedList时不要修改它,或者使用Iterator的remove()方法来删除元素。 您的Android NDK项目无法找到应用程序项目

基于java的网络聊天室服务器端.doc

基于java的网络聊天室服务器端.doc