写一个点云骨架提取代码
时间: 2023-11-23 18:07:55 浏览: 124
点云骨架提取是一个比较复杂的问题,需要利用计算机视觉和机器学习等技术进行处理。下面给出一个基于深度学习的点云骨架提取代码实现,供参考:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torch.optim import Adam
import numpy as np
from sklearn.neighbors import NearestNeighbors
from plyfile import PlyData, PlyElement
import open3d as o3d
class PointNet(nn.Module):
def __init__(self, in_channels, out_channels):
super(PointNet, self).__init__()
self.conv1 = nn.Conv1d(in_channels, 64, kernel_size=1)
self.conv2 = nn.Conv1d(64, 128, kernel_size=1)
self.conv3 = nn.Conv1d(128, 1024, kernel_size=1)
self.fc1 = nn.Linear(1024, 512)
self.fc2 = nn.Linear(512, 256)
self.fc3 = nn.Linear(256, out_channels)
def forward(self, x):
batch_size, _, _ = x.size()
x = F.relu(self.conv1(x))
x = F.relu(self.conv2(x))
x = F.relu(self.conv3(x))
x = torch.max(x, dim=2)[0]
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
class PointCloudDataset(torch.utils.data.Dataset):
def __init__(self, data_path):
self.data_path = data_path
self.plydata = PlyData.read(data_path)
self.points = np.array([list(point) for point in self.plydata.elements[0].data])
self.normals = np.array([list(normal) for normal in self.plydata.elements[1].data])
self.tree = NearestNeighbors(n_neighbors=10).fit(self.points)
def __getitem__(self, index):
point = self.points[index]
normal = self.normals[index]
_, indices = self.tree.kneighbors([point])
neighbors = self.points[indices[0]]
relative_position = neighbors - point
relative_position = np.transpose(relative_position)
return relative_position, normal
def __len__(self):
return len(self.points)
def train(model, optimizer, data_loader, device):
model.train()
for data, target in data_loader:
data, target = data.to(device).float(), target.to(device).float().view(-1, 3)
optimizer.zero_grad()
output = model(data)
loss = F.mse_loss(output, target)
loss.backward()
optimizer.step()
def test(model, data_loader, device):
model.eval()
with torch.no_grad():
for data, target in data_loader:
data, target = data.to(device).float(), target.to(device).float().view(-1, 3)
output = model(data)
mse_loss = F.mse_loss(output, target)
print('MSE loss:', mse_loss)
def main():
data_path = 'point_cloud.ply'
dataset = PointCloudDataset(data_path)
data_loader = DataLoader(dataset, batch_size=32, shuffle=True)
model = PointNet(9, 3)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)
optimizer = Adam(model.parameters(), lr=0.001)
for epoch in range(100):
train(model, optimizer, data_loader, device)
test(model, data_loader, device)
if __name__ == '__main__':
main()
```
其中,`PointCloudDataset` 类用于读取点云数据并提取相邻点之间的相对位置,`PointNet` 类是一个基于 PointNet 的神经网络模型,用于学习相对位置和法向量之间的关系。`train` 函数用于训练模型,`test` 函数用于测试模型,`main` 函数用于整个流程的控制。