Transformer语音识别
时间: 2024-10-14 09:00:52 浏览: 77
Transformer模型在语音识别领域的应用主要是通过将自注意力机制引入到传统的序列模型中,例如以前基于循环神经网络(RNN)或卷积神经网络(CNN)的语音识别系统。Transformer模型能够并行处理输入序列的每个部分,这显著提高了模型的计算效率,并有助于捕捉更长范围的依赖关系。
Transformer通常包括几个关键组件:
1. **编码层**(Encoder Layers):对音频信号进行分帧和特征提取后,通过多个自我注意力模块和前馈神经网络(Feedforward Networks)进行处理,生成一个表示语音特征的高维向量序列。
2. **自注意力机制**(Self-Attention Mechanism):允许模型关注输入序列的不同部分之间的相互作用,增强了模型对全局上下文的理解能力。
3. **位置编码**(Positional Encoding):由于Transformer不具有RNN的自然顺序信息,所以需要额外的信息来指示时间顺序。
Transformer架构广泛应用于端到端语音识别系统,比如Google的WaveNet结合Transformer的联合建模(Joint Speech-Text Modeling),以及DeepSpeech 2等模型,它们直接从原始波形预测文本,而无需手动设计特征工程。
相关问题
transformer语音识别
Transformer在语音识别领域是一种主流模型。然而,由于Transformer使用自注意力模型时需要考虑所有的历史信息,导致存储和计算的复杂度会随着语音时长线性增加。因此,原生的Transformer很难应用于流式语音识别。流式语音识别是指在用户还在说话的同时进行语音识别,具有低延时的特点,在工业界中有广泛的应用,比如听写转录等。目前,Conformer是另一种在语音识别领域流行的模型,本教程主要讲解了Transformer,并在课后作业中涉及了Conformer的相关练习。\[1\]\[2\]\[3\]
#### 引用[.reference_title]
- *1* *3* [基于Transformer的高效、低延时、流式语音识别模型](https://blog.csdn.net/weixin_40920183/article/details/112343264)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item]
- *2* [【飞桨PaddleSpeech语音技术课程】— 语音识别-Transformer](https://blog.csdn.net/qq_21275321/article/details/127573231)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item]
[ .reference_list ]
Transformer 语音识别代码
Transformer是一种基于自注意力机制的神经网络模型,广泛应用于自然语言处理任务中,如机器翻译、文本生成等。在语音识别领域,Transformer也被用于构建端到端的语音识别系统。
下面是一个简单的Transformer语音识别代码示例:
```python
import torch
import torch.nn as nnimport torch.nn.functional as F
class TransformerASR(nn.Module):
def __init__(self, input_dim,_dim, d_model, nhead, num_layers):
super(TransformerASR, self).__init__()
self.embedding = nn.Linear(input_dim, d_model)
self.transformer = nn.Transformer(d_model, nhead, num_layers)
self.fc = nn.Linear(d_model, output_dim)
def forward(self, x):
x = self.embedding(x)
x = x.permute(1, 0, 2) # 调整输入形状为(seq_len, batch_size, input_dim)
output = self.transformer(x)
output = output.permute(1, 0, 2) # 调整输出形状为(batch_size, seq_len, d_model)
output = self.fc(output)
return F.log_softmax(output, dim=-1)
```
在这个代码示例中,`TransformerASR`类定义了一个基本的Transformer语音识别模型。它包含了一个线性层用于输入特征的维度转换,一个`nn.Transformer`模块用于实现Transformer的自注意力机制,以及一个线性层用于输出类别的预测。在`forward`方法中,输入特征经过线性层和变换后,传入Transformer模块进行处理,最后通过线性层和log_softmax函数得到类别的预测结果。
阅读全文
相关推荐
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)