svm分割图像怎么加入hog特征代码
时间: 2024-02-07 20:14:22 浏览: 71
以下是使用Python和OpenCV实现将HOG特征加入SVM进行图像分割的示例代码:
```python
import cv2
import numpy as np
# 提取图像的HOG特征
def get_hog_features(image):
hog = cv2.HOGDescriptor()
hog_features = hog.compute(image)
return hog_features
# 加载训练数据集
train_data = []
train_labels = []
for i in range(num_samples):
image = cv2.imread('image_'+str(i)+'.jpg', 0)
hog_features = get_hog_features(image)
train_data.append(hog_features)
train_labels.append(labels[i])
# 训练SVM模型
svm = cv2.ml.SVM_create()
svm.setType(cv2.ml.SVM_C_SVC)
svm.setKernel(cv2.ml.SVM_LINEAR)
svm.train(np.array(train_data), cv2.ml.ROW_SAMPLE, np.array(train_labels))
# 对测试图像进行分类
test_image = cv2.imread('test_image.jpg', 0)
test_features = get_hog_features(test_image)
result = svm.predict(test_features.reshape(1,-1))
# 显示分割结果
result_image = np.zeros(test_image.shape, np.uint8)
for i in range(test_image.shape[0]):
for j in range(test_image.shape[1]):
if result[i,j] == 1:
result_image[i,j] = 255
cv2.imshow('Result', result_image)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
在上述示例代码中,我们通过get_hog_features函数提取图像的HOG特征,并将其与对应的标签一起作为训练数据集。然后,我们使用cv2.ml.SVM_create函数创建SVM分类器,并使用svm.train函数对训练数据集进行训练,得到训练好的模型。对于测试图像,我们同样使用get_hog_features函数提取其特征,并使用svm.predict函数对其进行分类。最后,我们将分类结果可视化,并通过cv2.imshow函数显示出来。
阅读全文
相关推荐
![-](https://img-home.csdnimg.cn/images/20241231044955.png)
![-](https://img-home.csdnimg.cn/images/20241231044736.png)
![-](https://img-home.csdnimg.cn/images/20241231044955.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![docx](https://img-home.csdnimg.cn/images/20241231044901.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![docx](https://img-home.csdnimg.cn/images/20241231044901.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)